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FOREWORD

The Conference on Computer Criented Analysis of Shell Structures,

sponsored jointly by Lockheed Missiles & Space Company and Air Force

Flight Dynamics Laboratory, was held at the Lockheed Palo Alto Research

Laboratory in Pa~o Alto, California, on 10-14 August 1970. The primary

objective of the conference was to bring toget-her specialists in the field of

computer analysis of shells and shell-like structu-res for an exchange of

information through the prescntation of paper3, panel discussions aud

i,.formal discussions. Particular emphasis was placed on recent develop-

ments in discrete rrethods for analyzing the static and dynamic response

of shell structures and on the related problems of computer technology,

numerical analysis and applications to engineering problems.

The conference was attended by 161 persons: 85 from industrial

organizations, 45 from universities and 31 from government agencies.

Twenty-seven invited papers were presented at the conference in

13 sessions as indicated on page viii. In addition there were three panel

discussions: Meeting the Dem~ands of Advancing Aerospace Technology,

Finite Elf ment Versus Finite Differences, and the Large General Purpose

Computer Code. Extensive discussions followed each paper and these

were tape recorded. The tapes were later transcribed and edited and

are included in these proceedings following the appropriate paper. The

panel discussions were also tape recorded, transcribed and edited and

ar." also included. Considerable liberties were taken by the editor in

order to condense the discussion, and for that reason most comments and

questions are printed anonymously. Where names are mentioned, tnese

people were given the opportunity to examine and approve the edited ver-

sion.

This report contains the proceedings of the conference. These pro-

ceedings were prepared by th6 Lockheed Palo Alto Research Laboratory,

ii
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Palo Alto, Califoratia, under Air Force Contract No. F33615-69-C-1523.

it was administered under the Structures Division, Air Force Flight

Dynamics Laboratory with Mr. T. N. Bernstein (FDTR) acting as Pro-

ject Ez.gineer. The proceedings were edited by Dr. Richard F. Hartung,

Manager, Structural Mechanics Laboratory, LMSC.

This report has been reviewed and is approved.

Chief, Solid Mechanics Branch
Air Force Flight Dynamics Laboratory
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HAROLD C. MARTIN MEMORIALSt °

It seems espaclall1 appropriate that the present volume, in consideration

of its content, should contain some words of appreciation in memory of

Dr. ,arold C. Martin. Because of his professional involvement over the

past thirty year period in the field of structural engineering - as practicing

engine.r, -Aducator, research worker, author and consultant - it was inevitable

that a symposium devoted to numerical shell analysis should include a large

number of his friends, former students, and co-workers among is participants.

Harold was born in Brooklyn, New York on March 30, 1913. He attended

the public schoo!- in that area through high school and continued his education

at New York University, where, in 1934 and 1937 respectively, he received a

B.S. degree in Mechanical Engineering and a M.S. degree in Aeronautical

Engineering. The next two years were spent at Boeing in Seattle, followed by

two years as a stress analyst at Republic Aviation Its Farmingdale. He returned

to New York U.iversity as Instructor in Aeronautics in 1941, and thereafter

his primary occupation was in engineering education and research. In 1942 he

moved to Princeton as Instructor in Aeronautics. During the period 1944 to 1948

he served as Instructor and Research Assistant in Aeronautics at the California

inst.tute of Technology, while completing most of the requirements for the PhD

degree. In 1948 he b&;an his career at the University of Washington as Associ-

ate Professor in Aeronautical Engineering, and he retalneo his affiliation with

the University until the time of his death on August 23, 1970. After completing

his thesis, "Elastic Instability of Deep Cantilever Struts Under Combined Axial

and Shear Loads at the Free End, " he was awarded the PhD from the California

Institute of Technology in 1950. In 1952 he was promoted to the rank of

Professor at Washingtw, and from 1957 through 1960 he served as Department

Head in Avonautical Engineering. While at Washington, he also served at

various times as Visiting Professor at the University of Hawaii and at Stanford

University. Starting in 1952, he was a technical consultant in structural analysis

at The Boeing Company.
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lhroughout his professional career Harold's interests were concentrated in the area of

Sstructu-oal analysis. These interests did not take the form of a dledication to exact

anc.ysis as an end in itself, but clearly originated from a sincee 61.1::1 in the inherent

*',orth of anal tical effort. Harold was convinced that analytical methods constitute

an lmportai:" ' "o* for solving practical problems and that the social value of engineer-

ing a•rcomplishmrnnts resulti Ng from such endeavor provides a valid mo' A-Lmi for the

work. During the years of World War II and those Immediately following, his research

nnd teaching were muinly concerned with stability analysis and applications of the

the,,Ty of elastlcity. It was a natural cutgrowth of his practical motivation that Harold

eca "- greatly h.rigued by the potentialities of matrix methods in conjunction with

..iph sr d•d dgqital computers fxr the analvsis of complex structures. Subequent to 1953,

I? " -. .. v centrate, principally in this area.

Withn. fte available space i is impossible to give a complete accoiJnt of Harold's

technical accomplishments and publications. Therefore, we shall only mention three

. aportant woks. In 1953 Harold and several colleagues began work on the formulation

and ii, .emewtation of the finite element displacement method. This work led to the

paper, "Stiffness and Deflection Analysis of Complex Structures," published in 1956

in the Journal of The Aeronauticl Sciences, and pioneered the application of tho

finite element structural analysis approach which has had world-wide application in

recent years. Another pcper, "On the Derivation of Stiffness Matrices for the Analysis

of Large Deflection and Stability Problems" (Proceedings of the Conference on Matrix

Methods in Structural Mechanics, Wright-Patterson Air Force Base, 26-28 October,

1965) deals with large deflection and geometrically nonlinear problems in finite element

analysis; it contains a clear exposition of the fundamentcl principles of this subject

and a historical review of its development prior to 1965. The third work is the excel-

lent textbook Introduction to Matrix Methods of Structural Analysis, McGraw-Hill,

1966. The dedication of this book is c€ clear statement of the professional philosophy

of its author; the statement is: "This book is dedicated to the structural engineer who,

by using his talents and knowledge, benefits mankind."

Although he did not often volunteer his opinions on religious matters, it was

apparent to all who knew him well that Harold had sincere Christian convictions

'A



and that these convictions were the primary foundation of his philosophy of

life. He expressed genuine love for human life, and concern ovw the problems

k.cing people today, resulting from the pressure of increasing world population

and from the moral and spiritual degeneration of society. He felt that most of

the problems of man could be solved if men would have true consideration for

others, and if they would approach problems with the conviction that a reasoned

attitude would lead to a reasonable solution. He was disturbed and disappointod

to find that others often did not share these views.

Among the reminiscences of those who knew him well there is the common

message that Harold was a valued friend, one whose passing is felt as a definite

loss. Harold was a stimulating colleague, and it was always a pleasure to be

with him. He was sincerely interested in people, and he took time to listen to

what they had to say. He was loyal to friend and acquaintance alike. Harold's

friends were many; they came from diverse walks of life; and they all valued his

friendship. Harold deeply appreciated his friendships and associations; they

were an essential part of his life.

This memorial is closed with a quotation from the Bible. It was one of Harold's

favorites, and it describes him and his philosophy more clearly than the many

words written above.

Micah 6:8

He has showed you, 0 man, what is good;
and what does the Lord require of you
but to do justice, and to love kindness,
and to walk humbly with your God?
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V OPENIG REMARKS

DR. GRIFFI'TH: Good morning, ladies and gentlemen.

On behalf of the mnanagement and staff of the Lockheed Missiles and Space

Company, it is my privilege to bid you welcome for the five ac1rs of this

conference. We're honored to be your hosts for these meetings at our

Palo Alto Research. Laboratory. Particular note needs to be made of

the instrumental role of the Air Force Flight Dynamics Laboratory in

making this conference possible. Without their foresight and wisdom, it

would have been impossible to hold this conference and we're very grate-

ful to the Flight Dynamics Laboratory for what they have done and what

they will do during the course of our meetings. We must also recognize

the additional role of the Flight Dynamics Laboratory within their own

laboratories and the support that they have given to studies in other parts

of the services, in industry and in our universities for development of the

subject. Without that we wonld have a far less rich topic to cover this
week.

In these acrimonious times we hear a good deal about the "military-industrial

complex, " and I think it is important to note that the weeks' program will

shed some light on this whole subject in terms of what is right and what is

wrong with the charges. Certainly to oversimplify is wrong and I would

claim that in using the term inilitary-industrial, the matter has been over-

simplified. Clearly it should be expanded. As one sees both from the

program and the roster of registrants, the correct descriptor is "military-



industry-university complex"; and I urge you academic representatives to

insist upon your full share of the action. In another regard, however, I

think the designation is indeed correct. Certainly our relationships as

institutions with one another and even arriongst ourselves and the problems

that we work on are certainly complex and we do have a very valid asser-

tion.

In shell analysis there are two fundamental questions which one addresses

himself to. Both of these will be recurring themes through the papers and

the panel discussions and summary remark-. that you will have during the

week. The first question would appear to be: What is the correct mathe-

matical description of a re.al structure and the properties of the materials

from which that structure is made? And the second underlying question

is: How accurately can these mathematical representations be analyzed

at reasonable cost and in reasonable time to predict and understand the

behavior of the structures which the mathematics describes? I believe

that you will find the material to be presented this week will add a great

deal of information and understanding on an approach to answering these

two questions.

COL. J. R. MYERS: The primary objective of this conference is

to present and promote, if you will, the most recent developments in

structural shell analysis. As I understand it, emphasis will be placed on

numerical methods and the associated computer technology required to

apply these analyses to practical engineering problems and, gentlemen,

let me repeat that last phrase- -required to apply these analyses to practi-

cal engineering problemc. Within the last several months we have seen a

_-g1Q



number of new starts within the Air Force. The F15, the Bl advanced

bomber, AWAC, AX, and so on. Now these aircraft as such will be in

environments that are really going to press us and we haven't solved

some of the current problems as yet.

As most of you know, Lockheed has been working under Air Force contract

during the past year in order to assess current shell analysis capability

throughout the Unittd States. Many of the organizations represented here

this morning have been interviewed and this conference is being held so

that you may share the wealth of general information, valuable experience,

unpublished ideas that have been uncovered during this study.

Most of us here today are concerned with research and development needs

and are keenly aware of the current R&D climate which confronts us. In

this regard, I would like !:, q,'ete from rt.narks made by Gen. Ferguson

at the recent Fatigue and Fracture Conference held at Miami Beach last

December (1969).

"The causes for the present anti-military climate are

numerous, divergent and sometimes only marginally re-

lated. Nonetheless, military and military -related activi-

ties present such a large and obvious target that all sorts

of diverse dissatisfactions converge upon the man in uni-

form, and all those in any way associated with it--univer-

sities as well. If nothing succeeds like success, success

in the case of the military R and D would appcar to hava

stýcceeded a little too well. Certainly a strong case coild

be made that the so-salled milita.ry-industrial complex

hat helped the United States to survive, to grow and pros-

per in a hostile world, but the very essence of art, it is

said, is to hid the labor that went into its creation. And

•3
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| so having succeeded so well in countering every threat

to our national secarity, we have perhaps made it seem

that there is no threat. Or that we are internally immune

from any external threats. At a time when the Soviets

are expanding in every area of re3earch, development and

production of weapon systems and Red China is testing

missiles to deliver its nuclear warheads, many elements

in the United States are turning against defense research

and development. "

We in research and development face some lean years in spite of increased

responsibility. We've got to achieve our technological goals for advanced

systems with fewer resources. This will be the real challenge to our

creativeness, ingenuity and resourcefulness. Gentlemen, during the past

several years, I have fostered this business of computer techniques as

applied to shells because, in my own mind as Chief of the Lab, I think that

this is an opportunity for high payoffs to this country. " think you've got

kind of an exciting week ahead of you. Thank you very much for coming.



DESIGN PROELEMS OF SHELL STRUCTURES AND
THE IMPACT OF THE COMPUTER ON SHELL ANALYSIS

By Manuel Stein

NASA Langley Research Center
Hampton, Virginia

SUMMARY

A brief description of the essential nature of shell theory and the shell
equations is followed by a survey, with examplea, of the types of shell
problems that are of important concern to the structural designer and, therefore,
of interest to the shell analyst. The principal approaches to the shell problem
solution are outlined and some of the important effects that the computer has
had on shell analysis and the analyst are discussEA. Deficiencies in shell
technology, requiring additional research, are indicated.

INTRODUCTION

Solutions of problems in shell structures were attempted as early as 1744
by Euler (see ref. 1). Such problems were among those which motivated the
formulation of the general equations of elasticity by Navier in 1821. In 1850
Kirchhoff developed the theory of plates, and this theory was used by Aron in
187T4 to develop the first theory of shells. Some inaccuracies in Aron's theory
were found and corrected by Love in 1888 (see rsf. 2). The theory of shells
based on the hypotheses of Kirchhoff and the development by Love is not unique,
and many other formulations have been developed. In 1960, Koiter (ref. 3)
defined a criterion for judging the accuracy of linear shell theories, and
showed that most other theories differ from Love's by irsignificant terms only.

For the benefit of those people who are not shell experts, this paper gives
the engineering definition of a shell, describes the basic ideas which lead to
the theory of shells, and discusses some important problems facing the designer
of shell structures. A number of examples will be given to illustrate the kinds
of problems involved in the analysis of shells. A second objective is to
characterize the two principal approaches to obtaining solutions to the shell
equations.

Because of the extrene complexity of shell theory, only the simplest cases
could be solved before the advent of the digital computer. However, the
analysis of shell structures has expanded in quantity and scope as the capa-
bilities of the computer have grown•. A study of the journals indicates that

• iuiitially the application of the computer to shell analysis was gradual. In
the early 1960's computers were used for acme problems, but it was not until
the middle 1960's that the words "computer solutiorn appeared in titles and
that the operations involved were tailored for calculations carried out by

L-7225



coiputers rather than those carried out by hand. The third objective of this
paper is to review the tremendous expansion of shell analysis and the corre-
spondirg growing pains associated with computer solutions and to suggest what,
in the author's opinion, is needed for the immediate future.

UIODAMELTALS OF SHELL ANALYSIS

Shell structures appear in a great variety of applications including air-
craft fuselages, launch vehicle tanks and intertank stractires, pressure
vessels, rocket motor cases and nozzles, gas turbine engine cases, submersible
vessels, and ground based storage tanks. Detailed shell wall configurations
may take a wide variety of forms including, for example, isotropic, stiffened
in one or more directions, laminated, and filamentary composite (see Fig. 1).

A shell is defined as a body having one dimension - the thickness - small
compared with the other two dimensions. The general shape of the shell wall
can be represented by a curved surface in space usually termed the reference
surface (see Fig. 2). Thus the shell geometry may be determined from the shape
of the reference surface, the shell wall thickness, and the shape of the
boundary. The analysis of shells is based on the fundamental laws of solid
continuum mechanics. The assumptions listed below (which are called Kirchhoff
assumptions) are generally admissible because of the thinness of the shell wall:

(a) Straight lines normal tc the shell reference surface before deforma-
tion remain straight and normal after deformation, and these lines do not change
in length during deformation of the shell.

(b) Stresses normal to the shell reference surface are negligible in
comparison with the other stresses in the shell wall.

Integration through the thickness permits a two-dimensional formulation of
the theory of shells in terms of the coordinates of the reference surface. This
formulation transfers attention from stresses to forces and moments which are
fundamental quantities in shell analysis.

The quantities which the analyst must determine in order to describe Lhe
behavior of the shell are shown in Figure 2. These quantities are the moments,
rotations, forces, and displacements associated with the reference surface. In
Figure 2, the sketch on the lrer right shows the so-called membrane forces and
the shears and the sketch on the upper right shows the moments and torques
applied to an element of the shell wall. The equations required to determine
the behavior of the shell include equations which define the equilibrium ot
forces (that is, membrane forces and shears, moments and torques) on elements
of the shell wall, equations representing the relations between these forces
and quantities associated with the deformation of the shell wtll called strains,
relations between these strains and the displacements of the shell reference
surface, and the proper boundary, continuity and initial conditions. Equilibrium
equations may be obtained directly from considerations of the forces on an
element or may be derived from a variational principle. The variational



principles which are commonly used in shell theory include the Principles of

Minimum Potential Energy, Minimum Complementary Energy, and Virtual Work, and

Hamilton's Principle. All of these principles stem from fundamental laws of
solid mechanics. Advantages of these variational principles in the derivation
of the equilibrium equations are that they permit certain freedom in selection
of candidate solution functions and that with their use the correct boundary
conditions to pby3ical problems are generated automatically.

One indication of the re-.ative difficulty of solution of shell problems,
perhaps, is represented by the order of the differential equations involved
in the theory. Many dift'icult problems in mathematical physics deal with
equations of second order in the space variables. The equations of plate theory
are fourth order. The equations of shell theory, however, are of eighth order.
Another consideration which may complicate the solution of shell problems is
the fact that nonlinearities are often important. Usually, the elastic deforma-
tion of solid bodies leads to small displacements and linear differential
equations. In shell problems, however, the shell wall may displace several
times its thickness under load, and in this circumstance, even though the
strains may remain small, as is usual in sol.id bodies, they may depend
nonlinearly on displacements.

TYPES OF SHELL ANALYSIS

Various types of problems must be faced by the shell structure designer
and analyst. In general, the strength of the shell structure is of foremost
importance. Assessment of strength requires analysis of the forces or stresses
in the shell wall under all pertinent loading conditions and comparison of
these values with appropriate allowable values. Shells are often subject to
bending and compression and are, therefore, prone to structural instability
(buckling). Where oscillating load inputs are present, knowledge of the
vibration behavior of a shell structure is of vital importance to prevent
resonances which might dama.&g the structure. If the structure is subject to
very suddenly applied (or dynamic) loadings, the transient response might be
of importance. Finally, interaction between aerodynamic forces and structural
deformations may cause flutter problems, or so-called aeroelastic problems,
which play a significant role in the structural design of aerospace vehicles.
In this section, examples of these various types of shell problems are presented
to characterize them and to indicate the kinds of mathematical problems
involved in their analysis.

Stress and Deflection Analysis

The efficient use of space available in launch vehicles sometimes leads
designers to toroidal shell configurations for the purpose of containing high
pressure fluids. Such shells present especially interesting stress analysis
problems. Results of stress and deflection analysis of a toroidal shell under
internal pressure are shown in Figure 3 (from ref. 4). The crown of this shell
(identified in Fig. 3) is a special location, markirng the boundary between the

•h7



outer region of the shell, where the principal curvatures of the reference
surface are both positive, from the inner region where one curvature is
negative. While many pressure vessels are designed on the basis of the
simplest form of shell theory - linear membrane theory - application of this
theory to the torus leads to a discontinuity of displacements at the crowns an
obviously nuiacceptable result. The use of bending shell theory, on the other
hand, yield6 physically reasonable results. The comparison is shown at the
right in Figure 5, where the linear membrane result has been taken from
reference 5. On the left in Figure 3 is plotted an outer fiber stress distribu-
tion, that is a direct stress at the shell wall thickness surface, as a function
of the angular coordinate as calculated by both linear membrane theory .and
linear berding theozy. Note that the simple membrane theory yields stresses
which differ from the bending results by only 20 percent. It should be pointed
out that the geometric parameters of this relatively simple example have been
chosen so that linear bending theory indeed gives accurate results. It is
imoortant to further note that, for thinner toroidal shells, even linear bending
theory is not sufficiently accurate and nonlinearity must be introduced.

Buckling

Because the shell wall thickness is small relative to the other dimensions,
shell structures are susceptible to a mode of failure termed structural
instati2ity or buckling. Buckling occurs in shell structures in two forms. In
one form a gradual increase in normal or lateral deflections may occur with
increase in external loading until a maximum load level is reached. In the
other form (bifurcation), there occurs an abrupt change in configuration at a
load level where rhe initial equilibrium configuration becomes unstable. These
two forms of backling are illustrated in Figure 4 in which a characteristic
load parameter is plotted as a function of the corresponding displacement
measure. The maximum load type buckling problem is illustrated in Figure 4(a);
the analysis required involves increasing the loading in a stress and deflection
calculation until a situation is reached in which additional displacement occurs
accompanied by no increase in load. A nonlinear shell theory is required for
such calculations. The bifurcation type buckling is illustrated in Figrt', 4(b);
in this case a stress and deflection analysis provides a solution which must be
examined for stability by studying small excursions from it. The origins of
alternate paths (the bifurcation points) occur at the eigenvalues of a system of
homogeneous linear differential equations derived from the general equilibrium
equations, %nd, of course, the eigenvalues are the buckling loads and they depend on
the prebuckling solution. In bifurcation buckling problems, the prebuckling solution
may be obtained from either a l1 ear or nonlinear stress and deflection analysis.

Both types of buckling behavior are exhibited by a shallow spherical cap under
uniform lateral pressure. The shallow spherical cap mi ght represent the nose of a
planetary entry vehicle or heat shield of a manned space capsule. Results
for this problem are shown in Figure 5. The buckling pressure is plotted as a
function of a geometric parameter which measures the ratio of the rise of the
shell to its wall thickness. For very shallow shells, maximum-load type buckling
occurs with the deformation pattern ,ymmetric about the axis of the cap. For
values of rise .thickness parameter greater than 5, bifurcation buckling occurs; the
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symmetric prebuckling configuration becomes'unstable and an asymmetric buckle
pattern appears. The number of waves in the asymmetric buckle pattern which is
appropriate to each value of the rise-thickness parameter is indicated on the
curves.

Vibration

Shell structures for launch vehicles and spacecraft, for example, may be
subjected to h.Lgh frequency oscillating loads from rocket engines. To avoid
resonant conditions whidh might cause structural damage, it is important to
know the natural vibration behavior of such shells. The equations required to
determiroe vibration behavior of shell structures are linear and homogeneous
and, in fact, are quite similar to the equations required for bifurcation
buckling calculations. The eigenvalues of the system are now the natural
frequencies of vibration; one key difference between the vibration and the
bifurcation buckling problem lies in the fact that several natural frequenc4 es
are of importance to the designer whereas, generally only the lowest buckling
load is of interest.

Some illustrative results for vibration of a shell structure are shown
in Figure 6 (from r.f. 6) where natural frequencies for a simply supported
cylindrical shell are plotted as a function of tOie number of axial half waves, m.
Each value of m, the numbers of axial half waves, and n, the number of
circumferential waves, determine a natural frequency for the cylinder. For this
simple problem elementary functions satisfy the differential equations and the
boundary corn.itions and exact results are easy to obtain.

For particular values of the axial wave number parameter, the natural
frequencies tend to cluster together; in this case they cluster near the lowest
frequency. For more complex shells where numerical methods are required, the
closeness of the eigenvalues can lead to numerical difficulties •uch as slow
convergence or failure to determine all frequencies in the range of inte.'est.
Another consideration which may increase computational difficulties in shell
vibration problems is also illustrated in Figure 6. Note that the lowest
frequencies do not necessarily correspond to the lowest wave numbers in
contrast to the behavior of simpler structures such as beams and plktes where
the lowest frequencies almost always are associated with the simplest wave
forms.

Transient Response

Shell structures are sometimes subjected to very suddenly applied or
dynamic loads. In such cases the inertia of the shell may be important, and
calculation of the transient response of the structure may be necessary to
determine whether or not stresses or deflections remain within acceptable
limits. In transient response problems an additional independent variable,
time, is introduced. The shallow spherical she]l cap, hinged at the boundary,
under a distributed lateral pressure loading provides an illustrative example
for these problems. Solutions were obtained in reference 7 for a lateral
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pressure with a step variation in time and having a linear variation across the
chord diameter starting from zero at one point on the boundary. Transient
response results based on nonlinear shell theory are sho in Figure 7 where
the change in volume under the shell (a measure of the average lateral displace-
ment) is plotted as a function of time. The various curves in Figure 7(a)
are for different values of the magnitude of the average step pressure loading.
The maximum volume changes from the response curves in Figure 7(a) are
plotted in Figure 7(b) as a function of the magnitude of the average step
pressure. With increasing magnitude of the pressure, the curve in Figure 7(b)
changes abruptly at a value of the average pressure parameter equal to
about 0.27. The loads at which such behavior is exhibited in shell structures
have been termed "dynamic buckling" loads in a rough analogy to the maximum
load type of static buckling discussed previously. From the computational
standpoint, a significant feature of transient response problems in shells
is that, effectively, a complete static stress and deflection analysis must
be performed at each time increment, and often many time increments must be
taken to establish meaningful results. Computation times for transient
response problems are, therefore, substantially longer than for corresponding
problems in static stress analysis, buckling, or vibrations.

Flutter

Fluld flow along the surface of a shell structure zw.y cause a
self-induced oscillation termed "flutter." The flutter phenomenon involves
an interaction between the deformations of the shell structure and time-
dependent or unsteady aerodynamic forces, and the resulting physical system
turns out to be nonconservative. Flutter is essentially an instability in
the noncor.nervative system, and its calculation involves the determination of
complex eigenvalues of complex matrix equations. The usual requirement is to
determine a stability or flutter boundary by finding under what conditions
the real part of a complex eigenvalue changes from negative to positive. In
order to accomplish this task, a whole spectrum of complex eigenvalue problems
must be soived on the computer.

The form which one of these solutions takes is illustrated by results for
a circular conical shell in supersonic flow shown in Figure 8. Given in the
figure is an equation for the deflection w of the shell defining its
dependence on the complex eigenvalue X. Real and ima~itary parts of the
eigenvalue are plotted as a function of the velocity, and the flutter velocity
is indicated at the point where Re ('A) becomes positive anu, hence, w
increases exponentially with time. At velocities less than the flutter
velocity, oscillations with frequencies associated with the imaginary part of
X deray, due to aerodynamic damping.

METHODS OF SHELL ANALYSIS

In problems as complicated as those dealing with shells, almost all methods
of analysis will involve numerical calculations. Fcr the purposes of this
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* paper, shell analysis methods will be classified either as (1) analytical
methods if the differential equations are attacked classically and reduced to

algebraic equations which are then solved numerically or (2) numerical methods
Swhere the differential equations are first replaced by their numerical counter-
part and then solved directly.

Analytical Methods

Analytical methods in shell analysis usually result in closed-form solu-
tions or series solutions. Closed-form solutions are sometimes exact solutions
of the differential equations, but they may also be identified with so-called
boundary-layer techniques. In boundary-layer techniques, the equations are
broken into a set of simple equations for the interior of a shell structure and
a more complicated set for a zone near the boundary. Such techniques can be
t.ilered to study the behavior of shells for loadings and boundary conditions
ir. whi •h all important deformations occur in a narrow zone near the shell
boundary. Series solutions, on the other hand, are identified usually with
approximation techni.-ues such as the Galerkin or Ritz methods or Fourier expan-
sions of the differential equations. Such methods, if carried far enough, lead
to an accurate solution at any point within a shell contour.

The advantages of analytical methods stem from having available explicit
equations to examine which, in themselves, may give the analyst important
information on shell behavior as design changes are made. The equations may be
manipulated so that limiting cases may be determined precisely in order to check
the solution. Parameters natural to the problem may be identified and they may
be varied conveniently to determine rapidly the e& %2ntial behavior of the shell
over a wide range of values.

Analytical methods have two distinct disadvantages. First, they require a
knowledge of a variety of sophisticated solution techniques of ordinary or
partial differential equations. Second, a given form cf analytical solution is
invariably limited to shells of simple geometric shape such as cylindrical,
conical, or spherical, and subject to simple loadings.

Numerical Methods

There are three important approaches in numerical methods of shell
analysis: the finite element method, the finite difference method, and the
forward integration method. In the finite element approach, the structure is
broken up into a finite number of relatively simple physical elements and the
set of equations for each element is solved approximately except for a group of
constants. These constants are determined to satisfy conditions of continuity
and/or equilibrium amcng the elements. Use of a variational procedure
automatically provides a best choice of the finite el.ement equations governing
a structure within the limits assumed for element models. In the finite dif-
ference approach, derivatives in the equations are simply replaced by difference
expressions and integrals by sums. In the forward integration method, the
problem is corverted into an initial value problem and the solution is projected
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forward in space by a technique such as the standard Runge-Kutta method. A
comparison of the characteristics of the forward integration and the finite dif-
ference methods along with their-advantages and disadvantages is presented in
reference 8 for shells of revolution. All three approaches give solations
approaching the exact solution if enough properly defined elements or enough
difference or integration stations are used.

Numerical methods have the advantage of very general application; that is,
a formulation may be applied to wide varieties of problems with minor modifica-
tions. Practical shell problems invariably have complications such as variable
thickness, wall stiffening, a variety of loading conditions or combinations of
loads, a variety of boundary conditions or complicated shapes not easily
specified by equations. Such complications arc almost impossible to handle by
analytical methods, but can be handled in almost routine fashion by numerical
methods.

There are some disadvantages to numerical methods. Obviously, there must
be a computer of adequate capacity available to the analyst. The output of a
computer using nv.ierical methods is often a vast array of numbers, and this
situation sometimes obscures trends that might be obvious from an algebraic
formula. Finally, numerical methods are sometimes difficult to check, and
limiting cases may not be as easily obtained as with the use of analytical
methods.

TTHE IMPACT OF THE COMPUTER

Numerical methods could not be used extensively until computer capability
had been increased to present-day levels. Only nog are we able to use general
purpose computer programs that will handle wide classes of shell configurations.
Of course, t .e computer has also expanded our analytical capability. In the
sections that follow, some of the consequences of the use of the computer will
be examined.

The Effect of the Computer on Solution Techniques

The use of the computer requires all analyses to be reduced to a set of
algebraic equations. Solution techniques as used here are those sequences of
operations required to solve these algebraic equations.

Analytic solution techniques.- The impact of the digital computer on
analytic techniques has been modest. Primarily, it has allowed more terms to
be taken in series solutions so that solutions with slowly converging series are
now feasible. The computer has also permitted accepted standards for the
accuracy of such solutions to improve. The computer does not appear to have
stimulated the development of new analytic solution techniques.
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Numerical solution techniques.- By contrast, the availability of highL-speed
digital ccmputers has spurred a number of advances in numerical solution
procedures. For example, for nonlinear problems involving many equations, the
powerful Newton-Raphson solution technique has been developed for numerical use.
Hybrid combinations of Newton-Raphson and other nonlinear solution techniques
have also been developed with great success. Because of their -rcat capability
for repetitive application of simple operations, and because of their great
speed, computers also admit numerical methods that were too cumbersome previously,
such as the method of forward integration. Similarly, the computer has given
finite difference and finite element methods great significance by admitting
problems of great scope involving large numbers of simultaneous equations.

Shell Analysis and Design

This section will present a discussion of the recent expansion of shell
studies, the effect of this expansion on the analyst and designer, new ccmmunica-
tion problems of the analyst and designer, and, finally, some missing links which
are limiting the potential for computer analysis of shell structures.

Expansion of shell analysis and design capability. - Numerical methods have
led to the general purpose shell computer program so that almost any problem can
be solved with minimum idealization of the shell's structural detail. For
example, the effects of discrete stiffening attached to one side of a shell can
be included in the analysis instead of considering the overall, sme4-ed out,
effect of stiffening. This point is illustrated further by the fact that a
"complicated" problem solved 10 years ago was the nonlinear axisymmetric buckling
of a 2herical cap of uniform thickness (refs. 9 and 10), whereas a "complicated"
problem solved Just recently is illustrated in Figure 9 taken from reference 11.
In the older problem, numerical methods were used with even station spacing,
together with an iteration technique. In the newer problem, the axisymmetric
shell structure of Figure 9 was symmetrically and nonsymmetrically loaded and
is a layered orthotropic, longitudinally stiffened shell reinforced by rings
which were treated as discrete structures. A general purpose computer program
was us;, which was formulated from the energy with the method of finite dif-
fe-ences. Different station spacing was used in different segments. Maximum
stresses and buckling loads and configurations were determined. This general
program can work the 10-year-old problem routinely and with ease. This is a
fairly dramatic extension of analysis capability.

With on-the-shelf general purpose programs available, the designer can
quickly check out a wide variety of design systems or design changes in order
to investigate the impact on weight. In fact, such programs wi.U be an
integral part of direct synthesis programs for minimum weight shells. Develop-
ments of this type have already begun. A program for the automated design of
integrally stiffened cylinders inder combined loads is already operational and a
program for the automated design of stiffened cones is essentially complete.
Result: from the latter program are shown in Figure 10* where it has been

e_-.thr- in in"•d•. a O d -. o . A. ±u.rZ'oenl, .irkson College, for this example.
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&pp.• ad to the design of a minimum weight conical shell subject to a given
external pressure. The shell is clamped at its small end and assumed to have
an essentially inextensible ring at its large :.id. Four design variables, the
shell thickness, and the thickness, diameter, and spacing of tubular rings, have
been determined for minimum weight subject to a number of constraints. These
include sheet minimm gages, skin and ring yielding, panel buckling, ring
buckling, and general shell instability. Design results are sh.,n on the lower
left. The margins of safety at the lower right reveal that skin yielding, gross
buckling, and panel buckling were the important considerations.

The most difficult aspect of this analysis is the accurate calculation of
general shell instability. In marn previous synthesis programs such as for
cylinders, simple analytic expressions were used that could not be extended
with accaracy to more complicated geometries that might result in the least
weight. This program makes use of a general shell of revolution computer
program indicating that extension of synthesis problems to more general shapes
yet retaining necessary accuracy is feasible.

With the present expansion of shell analysis, it is logical to assume that
interdisciplinary analysis will increase in importance. Aeroelastic analysis
and coupled bydroelastic or thermoelastic analysis are exampleo of types of
analysis which will become more prominent. Figure 11 presents a sample of some
results in a coupled hydroelastic analysis (ref. 12). These results were
obtained by the numerical solution of the rather complicated combined hydrody-
namic and shell equations. The pressure results for axisymnetric impact of
shells on water are compared with the pressure obtained if the shell Vere a
rigid body. Such an impact loading may be a critical design conc.tion and
obviously serious errors (not necessarily conservative) in stress and buckling
results would occur if the interaction were not included.

Influence on the analyst and designer.- One clear Impact of the computer
has been the growth of perspective of the shell analyst. The day of the
specialist who devotes a lifetime of research to a narrow class of shell problems
and solution techniques is gone. The power to examine a broad spectrum of shell
structures and problems, which the computer has provided, forces the analyst to
a broader outlook and probably brings his outlook and that of the designer closer
together. Of course, the shell synthesis program represents a unity of these two
viewpoints.

But computerized shell analysis can have a powerful hypnotic effect, too.
The lazy analyst is tempted tz rely too heavily on the machine and to accept
inefficient bolutioh techniques, and there is the danger of total reliance on
numerical computer results to the neglect of the analyst's intuitive judgment
of the physical nature of the problem. Another danger for the unwary analyst
is inherent in the nature of the usual computer output - a blizzard of numbers.
Errors in the solution are thus often difficult to detect. Automated plotting
and other visual displays of results tend to remedy this problem; however, these
devices awe often neglected in computer program development and there is a need
to implem nt methods in new programs for the most effective display of results
so that the physical meaning is understood and errors are easily detected.
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Comamication.- Program documents usually contain a writeup of basic theory
and a user's manual including a listing of the program. The process of assimi-
lating this information is usually difficult and laborious. Often, the analyst
would rather set up his own less general program than try to fathom an available
program which was devised to do essentially his problem. This duplication and
wasted effort can only be avoided if the program is easy to use with relatively
simple input and the documentation accompanying the program is completep clear,
and concise so it offers the user an advantage in investing his time in learning
the new program.

It is worthwhile for the developer, as well as the receiver, that the
do'..,wi"ntation and the computer program itself be frequently updated. For
exaxple, errors may be found in parts of the program that were not used
previously. Algorithms in weak parts of the program may be improved. New
limitations of the program may be determined. Moreover, use of a program helps
debug it and improve it; thus, use increases the value of the program. Proprie-
tary programs which lie unused may thus stagnate and become obsolete. The
author believes that shared programs, with their greater potential for frequent
use, will grow in their solution power and pay bigger dividends to the developer
and, through sharingj the q,..lity of the analysis of shells will rise to the
level of the best engineering talent.

In a similar vein, the value of a computer program to a designer is propor-
tional to its use. The designer will be able to apply intuitive judgment for
problems involving geometry and loads within his previous experience, but would
probably have difficulty for problems beyond his previous experience. A wider
scope of experience can be provided if development of each new computer program
is immediately followed by a limited parameter study leading to published
charts. Each study should explore a new parameter regime made accessible by
the development of the program. This would automatically lead to extension of
the shell designer's knowledge of shell behavior and contribute to safer, more
efficient designs. Therefore, the author strongly recommends that every new
general purpose program be accompanied by such parameter studies.

Influence on shell theory and experimc t.- The computer analysis of shells
will be no more accurate than the theory on which the analysis is based. There-
fore, a few major weaknesses of theory should be mentioned. A criterion for
establishing relative merits of various versions of linear theory exists
(ref. 3), but a corresponding criterion for establishing the relative merits of
the various versions of nonlinear shell theory has not been derived to the
author's knowledge. With the number of such theories growing and their extreme
cumplexity undiminished, the analyet needs some convenient basis for a rational
choice.

The buckling load of thin shclls is often considerably lowered by the
presence of small imperfections in shape. The present method of studying
imperfection sensitivity is by analysis of the initial postbuckling behavior of
perrect shells. This approach has been partl4 successful, but needs much more
development before it is ready for practical application by the analyst in sup-
port of shell design. The capacity for brute force account of known imperfections
in shape by nonlinear, general-shell computer programs is emerging, but is
likely to be very costly for the foreseeable future. Especially difficult will
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be development of methods to account (perhaps statistically) for probable
imperfections in shells before their manufacture.

Experimental research has not kept up with our ability to solve theoretical
shell problems of great complexity. For example, the computer has made possible
the analysis of end ring stiffness requirements for shells of revolution. This
is mignificant advancement in design capability, but there is, as yet, no
experimental verification of these methods. Mterefore, their application by
the practical designer will be inhibited by his natural reluctance to use
unproven methods. There is an obvious deficiency here, and the author strongly
rec-omends that experimental programs be accelerated to study the limitations
of computerized methods.

CONCLUDING REMARKS

For the benefit of those who are not shell experts, this papir has reviewed
the complexity of thin-wallt Whell structures, described the basic ideas lead-
ing to shell theories, and surveyed the important kinds of shell bihavior and
shell problems of interest to the designer.

The aysilabill.ty of the elec':ronic, digital computer has greatly affected
the capacity of the analyst to de,Ui with shell problems. It has stimulated the
development of numerical solution techniques and greatly increased the analyst's
solution power. A principal impact is the new capacity to obtain solutions for
very general shell configurations incorporating structural details that occur
in practical design. The computes: has forced the analyst to learn a new
language to prepare for its effective use and hab greatly increased his perspec-
tive, bringing it closer to that of the designer. The great complexity of
computer programs makes them difficult to communicate and their output difficult
to interpret.

The consideration of these factors has led to a number of recommendations.
Program documentation should be precise, complete, and frequently updated;
programs should be freely shared because of their tendency to improve with use
to the beaefit of all. New programs should be applied to parametric analyses
for generation of design charts to help extend the shell designer's knowledge.
Certain missing links in shell theory should be developed, criteria for a
proper choice of nonlinear shell theories should be established, and methods
for account of imperfections in buckling analysis need further development.
Findlly., experimental programs must be accelerated to verify computerized shell
analysis methods so that they merit the designer's confidence.
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Figure 9.- Wall construction of complex nozzle structure (ref. ii).
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(a) CHOSEN VALUES AND UNSPECIFIED PARAMETERS

MAGNESIUM MARGINS OF SAFETY

ts, -048" SKIN YIELDING .0044-

tR -010" (Min. Ga.) RING YIELDING .276

d 1.02" RING BUCKLING .497

s * 1.83" GROSS BUCKLING .027+-

WEIGHT - 52.7 Ib PANEL BUCKLING .057#-

(b) FINAL DESIGN

Figure 1.0.- Automated design of a stiffened conical shell.
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Figure ll.- Time history of pressure at the shell apex for axisymmetric
impact of shells on water (ref. 12).
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QUESTIONS AND COMMENTS FOLLOWING STEIN'S PAPER

QUESTION: Would you care to comment on how we might avoid

the generation of (xcessive output from the computer? If we don't put

the results on the printed page, where do we put it and in what form?

STEIN: One of the recommendations in my paper was that

plotting techniques should be used. Computer programs should be planned

so that those quantities which are imnportant to the analyst or other program

user can be plotted.

QUESTION: We are all aware of the difficulties encountered in

getting a program which was developed on one piece of hardware to work on

another piece of hardware. If we go one step further and incorporate plot

routines in the program, do you anticipate greater problems; or should

each user organization have their own plotting routines and then put those

into the program?

STEIN: One of the principal uses for plotting is in the

development stage where it is great for debugging and checkout. When

it comes time to share the program with users having different equipment,

there will, of course, be problems. However, these are by no means

insurmountable.

COMMENT: It has been my experience that it requires considerably

more effort to make a computer program user oriented than it does to

develop the program. A tremendous amount of effort is associated witlh
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documentation, checkout, parameter studies and. eparation of user's

manuals. Historically, funding agencies have not provided the funds

necessary to do much more than develop the code. As a result, many

such codes have never realized their full potential. I think we are going to

have to face up to the fact that it costs money to make new technology

user oriented.

COMMENT: You touched on the reluctance of analysts to accept

for use programs with which they are not familiar. Because it takes so

much time to learn a new program, he may not use the most efficient

program for his problem, or he may derive a special program for his

particular problem. In cases where a number of people a an organization

are occupied with shell analysis, it might be a good idea to have a specialist

on computer programs who learns the new programs as they come out,

and if he thinks they are worthwhile, he can implement them and act as a

consultant to others who may use them.

COMMENT: Two comments: first, I liked your remark on

generating design charts with any new program cf general nature, buL i•:s

practically impos3ible to find anybody who is willing to put up with the

bulk of computer time that is required for such studies. Second, we find

that it's possible to eliminate much unnecessary computer printout by

simply not even generating printed output the first shot. Instead, :re look

at the plotted output. It's very much easier to plot stress isobars on any

shape you have, look at tVem and then select and print out only the areas of

interest for your highest stress and so forth. We do that routinely.
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COMMENT: First, I want to say that at Ford we are using computer

graphics quite extensively for structural analysis on a production basis.

Basically, the engineer picks out what he wants from a graphical display

and has hard copy plots made. This includes input and output data, checking,

and so forth and so on. I also have a question with regard to the automatic

design example you consider in Figure 10. Did you use a special purpose

algorithm for optimization for this specific problem or was a general

purpose optimization routine used to find the minimum weight?

STEIN: The computer program that was used in this work

was for an axisymmetric shell. I believe the parameters were chosen

and computer algorithms were then used to find minimum weight.

QUESTION: Were these general purpose algorithms, or were

they for this specific problem? In other words, do you use a general

purpose optimization technique coupled with a general purpose structural

program?

STEIN: The example was based on a problem solved by

Bill Thornton who is at Clarkson University. I believe he used a Fletcher

Powell algorithm or something of that sort. That's all the information I

have on the problem.

COMMENT: I believe that some of the excessive computer output

which has been discussed here today is caused by dumps requested by

the user "just in case. " In order to minimize this, I can conceive of

employing an auxiliary storage facility connected to the computer on which

a dump would be made automatically in the event of an error. The dump
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could then be requested by the user for a period of up to 24 hours after

the run if he felt it was necessary. After that time the dump would be

scratched without ever having been printed.

COMMENT: I've heard several comments here today to the

effect that more money should be spent to generate design charts and per-

form parameter studies. It seems to me that no matter how many charts

we generate, you never seem to be able to find the particular problem you

have amongst those included in the charts. This is especially true for

multiparameter problems. Thus, you vnd up having to generate the

answer to your problem anyway. In my opinion, it's much better to forego

the parametric studies and design charts and develop a well documented

computer code which can be given to others so that they can generate the

answers to their own specific problems.

COMMENT: I think we're missing the boat a little bit on

the parameter study. The principal value is not the charts that c .ie out;

certainly they're helpful but I think it's the exercise that the code goes

through in generating the charts that is valuable. It helps us find the

bugs and make the code more reliable. So I really don't think the previous

comment is valid.

One further remark and that is that plots are not always the answer. Ive

gotten rolls of plots that are just as bad as stacks of output. It seems that

invariably the plot I want is in the middle of the roll or at the end. I would

like to see the rolls done away with and have the plots produced in flatfold

form in the same way the output is so that you can thumb through and go to

the middle or the back and not have to roll it all out on your desk.

32



COMMENT: We sponsor quite a few parameter studies at

Oakridge National Laboratories and have found the results to be very

useful. People in the pressure vessel field, for example, save a lot of

money using design charts and more could be saved if parameter studies

were available for the analysis of many off-the-shelf items.

COMMENT: I refer again to this question of parameter studies.

I think that one important aspect that really hasn't been brought forward

here is that when you have a general purpose code developed and operational

many people tend to think that all of the problems in engineering have been

solved and that when a new problem comes up all you do is run to that code

and get the answer. In fact, we have found that even when using our general

purpose codes which are debugged and are reliable, it takes often many

months or as much as a year to solve complex problems. Having para-

metric studies performed by the engineers who will use the code gives a

great deal more insight so that the next time around you could use the

code much more efficiently, avoid many of the pitfalls in modeling and

many other pitfalls which lead to poor results. I think that parameter

studies are also very useful when you c, sider trying to solve a new class

of problems. So I think these parametric Etudies have a lot of value that

is really being overlooked here.
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ABSTRACT

This paper reviews the numerical methods used to analyze shell structures.
For presentation purposes, shell configurations are classified according to
the number of directions in which the shell must be discretized in order to
determine a solution. One-, two-, and three-dimensional shell configurations
are then discussed for each numerical method presented. The paper limits
detail discussion to the finite difference, numerical integration, and finite
element methods. Major advantages and disadvantages of each method are given,
and areas which need further study are outlined. The paper concludes with a
discussion of the types of problems solved by all three methods. It is pointed
out that all three methods have been successfully used to solve many shell
problems and each has a definite place in shell analysis.
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1. INTRODUCTION

During the past decade great strides have been made in the design and
analysis of shell structures. These advances have been made possible by
application of discrete numerical analysis methods using high speed digital
computers. By using these numerical methods it is possible to obtain solu-
tions to shell problems involving such complexities as irregular surfaces,
variable thicknesses, anisotropic material properties, and nonlinear behavior.

This paper is being presented at this shell conference to define ard
compare the most widely used numerical discrete shell analysis methods. In
particular the paper will solely be concerned with the finite difference
(1-71* numerical integration (8-12], and finite element displacement methods
[13-43]. It is recognized that other numerical methods (e.g., collocation
[44]) have been successfully used in shell analyses. However, in most cases
these applications have been limited to specialized shell problews and for
this reason will not be presented here.

It should be pointed out at the beginning that the paper will not pre-
sent any new technique nor seek to ascertain or establish the "best" numerical
method. However, an attempt will be made to present the fundamental basis
for each method and review the application of each method in solving she~i
problems. A-vantages and disadvantages of each method will be pointed out
for specific shell classifications. Although many improvements have been
made in the three numerical methods discussed, there are still areas which
require further refinement. Therefore the paper will also attempt to cite
these areas.

The various shell computer programs which employ the reviewed numerical
methods will not be discussed iii this paper. They will be presented by other
shell conference papers, and a comprehensive assessment of these programs is
given by Hartung [45).

2. SHELL CLASSIFICATIONS

Prior to discussion of numerical methods, it is convenient for this
presentation to classify various shell configurations. Adopting a procedure
similar to Hartung [45], shell configurations will be classified according
to the number of directions in which the shell must be discretized in order
to obtain a solution.

Based on this classification, the simplest problems involve thin shells
of revolution subjected to azisym•netric loading. This problem need only be
discretized in the meridional direction, since the shell solution does not
vary in the circumferential direction. At the other end of the spectrum is
the three-dimensional (3-D) class, which includes thick shell problems. In

*Numbers in brackets refer to references et the end of the text.
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general the 3-D class requires that the shell be discretized through the thick-
ness as well as over its surface. A partial list of shell configurations clas-
sified according to the above standard is given below.

One-Dimensional (1-D) Problems

Thin ShelLs of Revolution - Axisymmetric Loads

Thin Shells of Revolution - Nonsymmetric Loads (uncoupled Fourier
harmonics)

Thin Shells of Revolution Nonsyametric Properties (coupled
Fourier harmonics)

Thin Shells of Revolution - Nonlinear Behavior (coupled Fourier
harmonics)

Two-Dimensional (2-D) Problems

Thin "Shells of Revolution" with cutouts or nonhomogeneous boundaries
Arbitrary Thin Shells
Intersecting Thin Shells
Thick Shells of Revolution - Axisyumetric Loads
Thick Shells of Revolution - Non3ymnmtric Loads (uncoupled or

couled Fourier harmonics)

Three-Dimensional (3-D) Problems

Thice "Shells of Revolution" with cutouts or nonhomogeneous boundaries
Arbitrary Thick Shells

Generally, the classification is dictated by the number of independent variables
required to discribe the problem. However, as noted above, advantage can be
taken of shells of revolution configurations to reduce an apparent two-dimensional
problem to a one-dimcnsional discretization. For example, in treating thin
shells of revolution under nonsymmetric loading, the loading and shell response
variables can be expanded in a Fourier series in the circumferential direction
[1-3]. For linear problems this results in a set of uncoupled problems, one
for each Fourier harmonic considered. Each of these uncoupled harmonic prob-
lems is solved using a one-dimensional meridional discretization, and the solu-
tion to the original problem is obtained by superposing harmonic solutions.

For nonlinear problems [6,10] or shells having variable circumferential
stiffness properties [3] , the Fourier decomposition technique results in a set
of equations in which the harmonics are coupled. Although this problem is much
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more complicated than the uncoupled problem, the resulting equations still only
require a one-dimensional discretization. Unlike Hartung [45], the present
authors feel that this type of problem should still be generally classified as
one-dimensional. It should be mentioned that sometimes these types of prob-
lems are better solved using a two-dimensional discretizationo An example of
this would be a shell having a discontinuous or highly localized circumferen-
tial stiffness or loading variation. For these cases, if a two-dimensional
discretization is used, then according to the above standard the problem is
classified as 2-D.

Several one- and two-dimensional problems are shown in Figure 1. One-
dimensional configurations for simple, stacked and branched shells of revolu-
tion are illustrated in Figures la, b, and c respoctively. Figures Id, e, and
f show typical two-dimensional configurations. Shaded regions indicate areas
where a three-dimensional analysis may be required.

3. FINITE DIFFERENCE METHOD

The finite difference method is a widely used •echnique for the numerical
solution of the shell differential equations. The fundamental basis of the
method is the approximate evaluation of continuous derivatives using discrete
point formulas. The method can be applied directly to the governing differ-
ential shell field equations (e.g., (1-6]) or to the potential energy expression
[7]. In the latter case the final algebraic equations are obtained by mini-
mizing the potential energy.

The specific finite difference exprebsions used are dependent on the form
of the differential equations. As an example, let us consider the eight-order
system of field equations (e.g., see (46]) frequently used in the linear analy-
sis cf shells. This system can be reproscnoted in the form of two partial dif-
ferential equations, each of fourth order, or four second order differential
equations, etc. A fourth order formulation would, of course, require finite
difference formula for approximating fourth derivatives, and similarly for
other derivatives.

To illustrate the application of the finite difference method, let us
consider the eight-order shell of revolution system represented, after Fourier
harmonic expansion, by four second order ordinary differential equations [l].
The matrix form of this set of field equations is given by

[AWx) d [B(x)I f I + [ C(x) JfYJ - IQ(X)I I

where A, B and C are (4, 4) matrices representing the shell stiffness and
geometry properties. The dependent variable y is a (4, 1) vector considered
in [1) as thrce displacements and the meridional bending moment.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Typical Shell Configurations

38



In its simplest form the application of the finite difference method is
initiated by dividing the shell into equally spaced intervals as shown in
Figure 2.for a one-dimensional shell of revolution.

i t-12

A i

A i+l

N

Axis of Revolution

Figure 2. Finite Difference Mesh

The central difference expressions for approximating derivatives in Eq. (1)
are given by

d2y Yi+l - 2 Yi + Yi-l
dx 2  A2

(i = 2, 3, 4,... -1()

2d Yi+1 - i
dx 2A

where i refers to a particular station or control point associated with the
finite difference interval A . The above expressions were obtained by curve
fitting a parabola through three successive points. The error associated with
the above expressions is order (A 2 ). Thus the smaller the increment (A l 0),
the better the approximation of the derivative. Formulas using higher order
curves to approximate derivative expressions are available and will give smaller
errors of order (An) . However, as would be expected, additional control points
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are required for these representations, and thus they increase the bandwidth
of the algebraic equation3. The bandwidth is defined as the maximum number
of terms to the left and right of the main diagonal. Since the time for
solving the set of algebraic equations is proportional to the bandwidth
squared, higher order formulas are usually avoided.

Continuing with the example, Eqs. (2) are only valid at interior points
in the shell discretization. At boundaries, forward or backward differences
or expresoionb requiring the addition of a fictitious point (2] may be used.
For exAple, in [1] the following forward and backward difference of error
order () was used

d y 2  Yl a
dx A at (3)

(3)

- N YN-N at i N
dx A

Application of the finite difference formulas (2) and (3) to the shell
differential equations (1) results in a set of algebraic equations which can
be expressed in matrix form

[Kilyl - hIJ (4)
where K is a (MN, MN, matrix, M being the number of dependent variables at
each control point ai d N the number of control points. For thi. example K is
a (4N, 4N) matrix. S'.nce, in general, K is a highly banded matrix, it may be
very efficiently solved on a digital computer. In reference [1] a special
Gaussian elimination method (Potter's Method) was used to solve Eqs. (4).
The procedure involved only the inversion of (4, 4) matrices,

In general, application of finite differences to any consistent form of
linear shell equations will result in a matrix equation of the form given by
Eq. (4). Although the example given was for a one-dimensional discretization,
the method is equally applicable to two- and three-dimensional shell problems.
The finite difference method can also be conveniently used to solve nonlinear
problems. In this case the resulting algebraic equations are nonlinear and
are solved by an iteration or step-by-step technique.

Ajpplication of the Finite Difference Method to Shell Configurations

The finite difference method has been applied to one-, two-, and three-
dimensional shell configuration problems. The convenience of application and
accuracy depends on the specific problem and type of shell configuration
considered.
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Although variable interval finite difference formulas are available, the
method is most conveniently applied to a uniform mesh. One of the difficulties
encountered in the application of the finite difference method is the selection
a priori of a mesh size to obtain economical solutions within accuracy require-
ments. This is particularly tw1e at boundaries or in regions where rapid changes
of loading or stiffness properties occurs. Finer mesh or higher order dif-
ference expressions are desirable in these areas. For example, it was found
for one-dimensional shell of revolution problems [2] that use of the three
point forward and backward expression (error (A,2 )) in place of the two point
expression in Reference [1] greatly increased the solution accuracy in the
boundary, region. The use of fictitious points and central differences also
increased accuracy [2].

Theoratically, finite difference cannot be used at locations where deri-
vatives are discontinuous. However, for shells of revolution this problem can
be e:1iminated by application of transition or compatibility and equilibrium
expressions at discontinuities as suggested in Reference [1]. The shell con-
figuration may be divided into multiple regions or segments to handle discon-
tinuous configurations with each region tied together by appropriate transition
equations. This procedure may also be used to allow changes in mesh size be-
tween regions. Care must be taken that the mesh size is not too different be-
tween regions, since numerical round-off errors could occur when using a
digital computer.

There are various other permutations of the basic finite difference ap-
proach that improve accuracy. Perhaps the best formulation to use with the
finite dif-erence method is a formulation which minimizes the highest order
derivative. In References [5, 6] a six-order and eight-order set of six and
eight first order equations, respectively, were solved. The dependent vari-
ables were stress resultants, displacements, and rotations. In both of these
formulations the interior differences were cf order (A 2 ) and it was not neces-
sary to use derivatives at boundaries. Furthermore, a higher order derivative
formulation such as given in (1] requires that finite differences be used in
the calculation of stress resultants. This can result in added inaccuracies
which the first order system formulation does not have.

The application of the finite difference method has characteristically
been restricted to orthogonal coordinate systems (mesh). Therefore, diffi-
culties occur in treating complex shell structures (arbitrary stiffened shell)
or shells with irregular boundaries or cutouts. Boundary conditions at
irregularities are especially awkward to treat. A part of this complexity
is rewoved when using the finite difference method in conjunction with mini-
mization of the potential energy [7].

In sumnary, the finite difference method yields excellent results in
treating one-dimensional problems. For two- or three-dimensional problems
finite difference is very useful for treating problems only requiring an or-
thogonal nesh of equal spaced intervals. It becomes difficult to apply to
general complex shell configurations with irregular boundaries.
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4. NIUMERICAL INTEGRATION METHOD

The numerical integration method is applicable to solving any system of
m first order ordinary differential equations which can be written in the form

where y(x) is an (m, 1) column vector which contains the m unknown dependent
variables; A(xy) is an (m, m) matrix which for nonlinear problems contains
functions of the dependent variable y; B(x) is an (m, 1) column vector which
contains the nonhomogeneous load terms; and x is the independent variable.
The boundary conditions for Eqs. (5) may be stated in the form

IF.] jy(a) I + IFbJ Jy(b)J - IG1(6)

where Pa and Fb are (m, m) matrices and G is an (m, 1) column vector, which
prescribes the boundary conditions at x w a and x - b.

The numerical integratiovn method of solving Eqs. (5) and (6) for linear
problems is straightforward and is described below. The solution of nonlinear
or eigenvalue problems is similar, but also requires an iteration technique to
arrive at the correct solution (8-11]. For linear problems A(x,y) - A(x)
and the complete solution of Eqs. (5) may be written in the form

IW - (Y(x)1 fy(a)J + fZ(x)j (7)

where Y(x) is an (m, m) matrix whose columns ace m independent solutions to the
homogeneous part of Eqs. (5). [Y(x)] may be obtained by using a numerical for-
ward integration method subject to the initial conditions that (Y(a)] equals
the identity matrix. The (m, 1) column vector Z(x) is the particular solution
of Eqs. (5) and may also be obtained by forward integration subject to the
initial condition that Z(a) equals zero. It should be noted that when carry-
ing out the forward integration use could be made of a predictor-corrector
integration technique which automatically selects the step size [8].

By evaluating Eq. (7) at x - b, the dependent variable y(b) may be
related to y(a) by the equation

I y(b) I - [Y(b)1 IYWa) + IZ(b)I (8)
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Thus one may see that Eqs. (8), together with the boundary conditions (6)
consditute a system of 2m equations from which the 2m unknowns y(a) and y(b)
are determined. Once y(a) is known, the solution y(x) at any value of x is
obtained from Eq. (7), provided that the homogeneous and particular solution,
Y(x) and Z(x) respectively, have been retained.

"Application of tle Numerical Integration Method to Shell Configurations

The application of numeilcal integration to ehell problems is limited to
solving problems which only require a one-dimensional diecretization, nor-
mally in the meridional direction. Furthermore, while the method described
above is theoretically correct and sound in principle, in practice it cannot

P• be used to solve shell problems whose meridional length L is greater than
approximately

:•L > (3/X) (9)

where X is of the order of magnitude

where R is the mi.rimum radii of curvature of the shell and h is the shells

thickness [8]. Tits reason for this limitation is that the homogeneous solution
for the shell equations has a term of the form e~x . Hence in solving Eqs.
(7) for Y(b), very large magnitudes are obtained when L > 3A Then in
attempting to determine y(a) and y(b) by solving Eqs. (6) and (8), it is fonnd
that a complete loss of accuracy results because of the subtraction of large
numbers of almost equdl magnitude. Therefore, some other procedure must be
used to solve shell problems of arbitrary meridional length.

The method used to solve ahell of revolution problems of any arbitrary
meridional length is called the multi-segment method, [8-11]. In using this

X! method the shell is divided into M contiguous segments denoted by Si, where
"i - 1, 2,...M. Each segment is chosen so that its length is smaller than

'4 ( 3/A ). Consider the shell segments shown in Figure 3. For descriptive
reasons the left edge of each shell is numbered starting at 1 for segment 1
and ending with M+1 at the right edge of segment M.

x 3 4  XM

x2S x M M+

xl

Axis of Revolution

Figure 3. Shell Segments



The governing shell equations are reduced to a system of eight ordinary
first order differential equations in terms of eight dependent variables (con-
sisting of stress resultants, displacement, and rotations) and the independent
variable x, the meridional coordinate. In analogy to Eqs. (7), the solution
to the governing equations within any segment is given by

-YW [Y(x)lj Iy(xO-i~ + IZ(x)li 1(- , 2,....M) (11)

where the subscript i on the matrices denotes that they correspond to segment
i. The solution at the end of each segment is therefore

ly(xi+l)ji - [Y(x)li Iy(xi)ji + fZ(x)Ii (i - 1, 2,...M) (12)

To complete the governing shell equations, the boundary conditions at x, and
xM+l may be written as

IFaI jy(xl)l + [FbJ 'Y(x,,+1 )) - IGI (1.3)

and the continuity equations which hold for contiguous segments are given by

[Tali 1Y(Xi+l)li + 1'bli+l IY(xi+l)li+l = IFI (i 1 l,2,...M-1) (14)

where Ta and Tb are (m, m) matrices which relate the dependent variables at
the right edge of i, {y(xi + 1)}i , to the dependent variables at the left
edge of segment i+l, {y(xi + 1)}i+i . Eqs. (12), (13), and (14) form a com-
plete system of equations from which the 2nm unknown variables at the edge of
each segment may be determined. Once these variables are found, the solution
at any value of x is obtained by Eq. (11).

As mentioned previously, numerical integration is limited to solving
problems which only require one-dimensional discretization. Thus the method
requires that the shell equations which represent the shell configuration be
reducible to a system of ordinary differential equations with one independent
variable. Hence in applying this method to the shell of revolution subject
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to asyi•netric loads, the governing partial differential equations must first
be reduced to a system of ordinary differential equationR with one independent
variable. As described earlier, this is done by expanding all the dependent
variables in a Fourier series in the circumferential direction. The re-
sulting ordinary differential may then be solved by the numerical integration
method.

Problems which cannot be reduced to a system of ordinary differential
equations may sometimes be solved by combining the numerical integration and
finite difference methods. For example, Kalnins [12] has solved the problem
of a curved thin walled shell of revolution by using a finite difference rep-
resentation in the circumferential direction and numerical integration in the
meridional direction. Other mixed methods of this type are also possible.

5. FINITE ELEMENT METHOD

The representation of a continuum by an assemblage of a finite number of
structural elements, each of which may be characterized by independent deforma-
tion modes, is called the "finite element" method [13, 141. The major dis-
tinction between the finite element method and the finite difference method
is that the finite difference method discretizes the differential equations
which describe the structure's behavior, while the finite element method dis-
cretizes the structure, and then constructs the governing equations for the
discretized model of the structure.

There are two forms of the finite element method called 1) the "force"
method and 2) the "displacement" or "stiffness" method [13-151. The force
method treats the internal forces or stresses as the basic unknown variablcs
and is usually associated with the Principle of Minimum Complimentary Energy.
The displacement or stiffness method considers the displacements as the basic
unknowns and is usually associated with the Principle of Minimum Potential
Energy. Of the two methods, the displacement method is usually preferred be-
cause its formulation and computation automation is relatively simple, and
yet it is still general. Since most finite element shell cnalyses use the
displacement method, the remainder of this section will only discuss this
method.

The application of the finite element displacement method is best de-
scribed by the following steps:

1. Idealize the structure. Choose the types of elements which will repre-
sent the structure and construct a discretized finite element model of
the structure.

2. Calculate the stiffness matrix for each of the elements which make up
the structure.
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3. Assemble the element stiffness matrices to form the structural stiffness
matrix for the entire structure. These equations are the equilibrium
equations applied at each nodal point of the structure.

4. Obtain the unknown displacements at each nodal point of the structure by
* solving the equilibrium equations subject to the imposed boundary re-

straint s.

5. Determine the internal strains, stresses, and forces in the structure.

All of the above steps are standard for solving problems using the displace-
ment F.E. method. The only differences which may exist between formulations
is the method by which the element stiffness matrix is obtained (Step 2).
Two basic techniques have been used to derive element stiffness matrices
[15, 161. They are 1) the "equivalent force" and 2) the "energy" methods.

The equivalent force method is based on assuming stress functions tc
represent the behavior of the element. The element strains and displacement
modes are obtained by integrating the stresses. In addition, "equivalent"
forces are calculated by integrating the stresses along the element boundary,
and lumping the forces at the nodes. Finally, by evaluating the displacements
at the nodal points and comparing these relations with the equivalent force
relations, the element stiffness matrix is obtained.

The energy method has been the predominate method used to derive element
stiffness matrices, since it is based on variational principles that provide
a sound theoretical basis for the finite element method 117-19]. Although
numerous variational principles have been used to derive element stiffness
relation [20-22], the displacement method is normally associated with the
Theorem of Minimum Potential Energy. A general formulation of the displace-
ment method based on the Theorem of hinimum Potential Energy was presented
mby melosh [17]. A discussion of the criteria for insuring the monotomec
convergence of the F.E. energy method solution is given in References [17-19].

fit was pointed out by these investigators that the convergence of the
finite element solution to thq. enact solution as the shell element sizes tre
decreased is dependent on a number of conditions. The two primary conditions
for convergence are that the deformation of each element maintain compati-
bility along interelement boundaries, and be capable of representing a state
of constant inplane strain and bending curvature. In addition, although aot
necessary from a convergence viewpoint, the deformation of each element should
include a complete set of rigid body modes which yield zero strains for the
shell theory used.

It should be noted that many finite element stiffness matrices have been
derived which do not satisfy the above conditions but still yield good solu-
tions [23, 24, 431. Nevertheless, finite element stiffness matrices which
satisfy the above conditicns are the objective of most finite element in4esti-
gators.



The general method for determining the element stiffness matrix by appli-
cation of the Principle of Minimum Potential Energy is given below. In applying
the finite element method, the body is first divided into a large number of
discrete elements as shown in Figure 4.

jt element

Figure 4. t e Element Model

The strain energy of the element, Uj, and work done by surface or boundary
tractions acting on the element, Wj may be written as

Uj V ( ([DJIIu )[E j([D]f jdV (15)

Wj - fs IPiTluldS (16)

where [E] is a function of the material properties, the matrix [D] is a
differential operator, and the vector {u} is the displacement or rotation
of any point within or on the boundary of the element. The deformations
{u } of the element are now assumed to be representable by a series of

functions f whose coefficients are the displacements or rotations, 6, at
the "nodal points" of the element, i.e.

lul H [ 16) (17)
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The functions * are chosen to satisfy the convergence criteria conditions
discussed earlier.

The Principle of Minimum Potential Energy states that of all displace-
ment functions which satisfy the displacement boundary conditions, the one
which satisfies equilibrium makes the potential energy an absolute minimum.
This principle may be written as

6 ~(U - Wji - 0 (18)

Substitution of Eqs. (15), (16), and (17) into (18) then yields the
final equilibrium equation for the body

~([k] 181 - IFLj 0 ) or [KI18i f~1 (19)

where the summation means that Eqs. (19) must be summed for all elements of

the body subject to continuity constraints. The matrix [k] is the element
stiffness matrix and the force vector {F} is the generalized external forces
acting on each element.

[k] f (DD[D1)T[EI ([DJ [D])dV

Y (20)

Sf Ipf ifI dS

It should be noted that Eq. (19) is of similar form as Eq. (4) of the
finite difference methud. It is conceivable that for specific pr)blems, ap-
plication of the finite element and finite difference methods can result in
an identical set of algebraic equatioa~s.

As in the finite difference method, the final matrix K is very sparse
and by judicious choice of a nodal point numbering scheme can be put in a
highly banded format. Automatic matrix re-ordering schemes have been em-
ployed in the finite element method to minimize the matrix bandwidth.

Application of the Finite Element Method to Shell Configurations

The major advantage of the finite element method is its complete gener-
ality and ease of application to complex problems. The finite element method
has been used to analyze all types of shell configurations. These analyses

48



make use of four basic element types (Figure 5): 1) conical and meridionally
curved axisymmetric shell elements [25-30]; 2) triangular or quadrilateral
flat and curved elements [21-23, 31-37]; 3) axisymmetric solid of revolution
elements [38-40]; and 4) three-dimensional solid elements [41]. In addition,
stiffened shell structures use straight and curved beam elements to represent
stringers and frames.

The first type of element used to analyze axisymmetric shells of revo-
lution were the conical elements [25-29]. As in the finite difference and
numerical integration methods, the Fourier series expansion technique was
used to treat nonsymmetric loads. However, as pointed out by Jones and Strome
[421, the-use of conical shell elements to represent curved shells sometimes
gave inaccurate results. These inaccuracies were predominate in problems
where distributed loads induced large membrane stress resultants. Development
of meridionally curved shell element [28-30] permitted a more accurate ideali-
zation which yielded improved accuracy.

Similarly, the first elements used to represent general curved shell
structures were flat triangle elements [31]. The flat element stiffness ma-
trix was improved by many investigators [21-23, 32]; however, it still has
the same inadequacies as those encountered with the conical element, and may
not always give accurate results for curved shell structures [33-37]. To
overcome this deficiency, many investigators have been working on developing
an adequate curved shell element [33-37] which satisfies the proper conver-
gence and rigid body conditions. This work has included using more degrees
of freedom per node to represent the shell deformation as well as using more
nodes to represent an element. In both cases the complexity of the element
stiffness matrix is increased as well as the computer computational time.
Even so, there does not appear to be an% ineral curved triangular or quadri-
lateral element which completely satisfies all convergence and rigid body
conditions.

Two- and three-dimensional solids are tre3ted using either the axisym-
metric triangular ring element or the general solid element (e.g., a tetra-
hedron) [38-41]. The first axisymmetric element used a linear displacement
field to represent its behavior. It was found, however, that for some prob-
lems, the stresses in contiguous elements would be greatly different if the
mesh was not exceptionally fine. This problem was reduced by combining tri-
angular elements to form a quadrilateral element, and then calculating
stresses for the quadrilateral element or by averaging stresses of elements
attached to the same node. Improvements in the solution were also obtained
by ueing a quadratic displacement to represent the element, and adding nodes
to the sides of the elements [41].

Other techniques to improve the accuracy of solution have been studied
and include mixed hybrid formulations [21] and mixed displacement and force
methods [15].

49



(a) Axisyemtric Thin Shell (b) Triangular Flat and Curved
Element Shell Elements

I (c) Axisymmetric Thick Shell (d) Three-Dimensional Solid
Element

Figure 5. Shell Finite Elements
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* 6. PROBLEMS SOLVED USING THE THREE NUMERICAL METHODS

Hartung (451 recently completed an extensive survey and assessment of
current capability for computer analysis of shell structures. This assessment
includes descriptions of major types of problems solved to date by the finite
difference, numerical integration and finite element methods. Table 1 is based
on this information, and shows the types of problems which have been solved by
the three numerical methods.

The table shows that one-dimensional discretization problems have been
extensively studied using all three numerical methods. The finite difference
and finite element methods are more extensively used than numerical integration.
The finite element method has not been applied as yet to buckling imperfection
sensitivity studies.

Two- and three-dimensional applications have not been as extensive as
one-dimensional applications. Furthermore, many of the problems studied in
this classification were done for special geometries and are not generally
available for solving arbitrary shell problems.

7. SUMMARY AND CONCLUSIONS

This review has presented the major features and limitations of the finite
difference, numerical integration, and finite element methcds. Each discrete
method was shown to be based on well founded principles, which guarantees that
the solution error approaches zero as the mesh or step size is decreased. The
finite difference and numerical integration methods have one source of error
(not including computational round-off error inherent in all computerized
methods). This error is due to discretizing the governing differential equa-
tions, and approaches zero as the mesh or step size is decreased. The finite
element method has two sources of error: 1) geometric idealization errors,
and 2) structural idealization errors. The first source is due to representing
the actual shell geometry with an approximate finite element idealization. The
"second source is due to representing the deformation behavior of each element
with only a finite number of degrees of freedom. The error due to geometric
idealization does, of course, vanish when the actual geometry is used. However,
when curved shell surfaces are represented with flat plate elements, the error
may not vanish [42, 431. Errors due to structural idealization can be proved
to vanish in the limit, provided that the deforma-ion modes of the element
satisfy the proper convergence criteria.

All three numerical methods have been extensively used to solve one-
dimensional problems, and if used with the refinements mentioned, gave very
good 'esults. In addition, for one-dimensional problems, all three methot.j
are about equal in ease of application.
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APPLICATION OF FINITE DIFFERENCE, NUMERICAL INTEGRATION,
AND FINITE ELEMENT METHOD COMPUTER PROGRAMS TO SHELL PROBLEMS

One-Dimenslonal Two- and Three-Dimensional
Problem Type F.D. N.I. F.F. F.D. N.Io* _ F°E

Static Analysis
Linear Elastic X X x X X X
Geometric Nonlinearity X X X X X
Material Nonlinearity X X X X

Buckling Analysis
Linear Elastic X X X X X
Geometric Nonlinearity X X x X X
Material Nonlinearity X X
Imperfection Sensitivity X X

Dynamic Analysis
Linear Elastic

Free Vibration X X X X X
Direct Integration X X X X

Geometric Nonlinearity X X X X
Material Nonlinearity X , x X

*To solve two- or three-dimensional probLems, numerical integration must
be combined with another method,

Table i
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Two-dimensional discretization problems can only be solved by the finite
difference or finite element methodo. Numerical integration is not applicable
for thia classification unless it is combined with another discrete method.
The finite element method is the easiest method to apply to two- and three-
dimensional arbitrary shell structures. It can easily handle surface irregu-
larities, variable material properties, and different types of structural
elements. Application of the finite difference method to two- and three-
dimension-' problems has been liwited, so far, to using orthogonal meshes
which are usually equally spaced.

Further work in the three reviewed numerical methods should include the
following:

1. Investigation of advantageous methods of combining numerical integration
with other discrete numerical methods

2. Development of techniques for treating arbitrary nonorthogonal finite
S~difference meshes

3. Development of an arbitrary curved triangular finite element which meets
all convergence and rigid body criteria

If a conclusion can be made from this review, it would be that each of
the discrete numerical methods presented exhibits some unique features that
make it a valuable shell analysis method.
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QUESTIONS AND COMMENTS FOLLOWING GREENBAUM'S TALK

COMMENT: When you listed the errors involved in the finit.

difference method, I think that you omitted geometric idealization errors.

This is the same kind of error that you listed for finite element methods.

For example, in a one dimensional shell of revolution problem, if I tak..

large intervals between node points along the meridian, then I'm going

to get poor answers by either method because of geometric idealization

error.

GREENBAUM: Let me restate what I said. In the finite difference

method we discretize the governing equations. However, in those govern-

ing equations we actually do treat, for example, the curvature of the

shell and we do express the curvature at each nodal point. Now in the

finite element technique, however, when we represent the same structure

with a flat element we do not include the curvature of the element. This

is what I really referred to by the phrase geometric errors.

COMMENT: On the same question I'd like to comment that there

is a close connection between the type of errors in the finite and the finite

difference methods. I think you use finite differences in the finite element

method in as much as you base it on the variational equation. You approxi-

mate the derivatives in the energy integral by their finite difference approxi-

nmations and then you perform a numerical integration. As you mentioned,

you can derive equations based on finite differences which coincide with

equations based on finite elements. If you can come up with the same

equations, the errors must be closely related in both methods.
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I'd like to comment further that you didn't mention mixed methods in your

list of methods. While they are less well known, I know of one mixed

where a curved triangular element was devised and excellent practical

results were obtained with it. However, no theoretical convergence proof

was provided for the method.

QUESTION: In equation 4, you included only linear terms. If

you have nonlinear terms, would you comment on the way in which this affects

the finite difference formulation, the solution procedures used and I

advantage which might accrue to finite difference or finite element ods?

Is the bandwidth of the matrices affected?

GP.EENBAUM: Normally, in a nonlinear problem, you wind lip with

a series of nonlinear algebraic equations. You can use several techniques

to obtain a solution to this set of equations. The most common technique

used today and perhaps the best one from a c(-nvergence standpoint is

Newton's method, in which you essentially assume a solution plus a correc-

tion for that solution and then iterate until the solution converges. However,

the nonlinearity itself does not really increase the bandwidth of the equations.

It just complicates the solution of the final nonlinear equations.

As far as a difference between finite element techniques and finite differ-

ence in treating nonlinear problems, this depends upon the background of

the analyst. I have heard it said by finite difference experts that finite

difference techniques are easier to use and, of course, similar statements

have been made by finite element experts. So I really would leave the

question as to which method is better, from the linear or nonlinear standpoint,

to the individual investigators. I really could not distinguish a difference
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there myself between finite difference and finite element.

COMMENT: I believe that Dr. Dupuis of Brown has developed

a curved triangular element which is compatible and convergent. Some of

the results are shown in his paper to be presented tomorrow.

QUESTION: I guess my question stems from ignorance about

the finite element method. I don't really understand whether we are dis-

cretizing the structure in the finite element method. Suppose we take a

general curved shell and divide it into small regions without discretizing

the structure at all. Now within each region we assume the displacement

to have a certain polynomial form with undetermined coefficients. We then

fori.. the energy expression and minimize it with respect to these coeffi-

cients in the presence of constraint conditions between the regions which

have to do with displacement compatibility. Now if we set up the problem

in the way that I've just outlined, what are the differences, say, in that

method and the finite element method? And if there are none, then I

don't see where the structural idealization comes in.

GREENBAUM: That type of technique could be uwed to essentially

derive an element stiffness matrix; that is, you could use the actual shell

geometry. You also could use some numerical technique to integrate the

actual geometry over the proper thickness and the proper surface. Strictly

speaking, if yuu did this, it would be called the finite element method.

However, I would like to point out that that is not normally how the finite

element method is used in practice. In practice we normally discretize

the structure with an assemblage of elements which do not actually repre-

sent the real geometry. They approximate it but they are not exact.
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COMMENT: I was wondering if you had given some thought to

representing .¾. undeformed geometry using things like Coon surface patches

which people at General Motors and other places use to model surfaces. I

think it might be appropriate in finite differences in locating points on the

surface and in finite elements in defining the geometry for making your

integrations. Maybe some of the surface representation work that's been

done around the country by people not normally in structural analysis

might be interesting to investigate,

COMMENT: I' .e heard some vague comments concerning various

other methods of solving large shell problems. One of them is a spline fit

method and the other would be a direct search method. Can you make any

comments on the appropriateness of these techniques for very large problems?

GREENBAUM: I would say that the energy search technique is a

procedure that we use to soive the final equations; it is not, in my esti-

mation, the method itself. For example, the finite element method can

employ direct energy search techniques. So I would label this as a

mathematical tool to solve the final algebraic equations but not to be a

new numerical method. I'm not familiar with the spline technique you

mentioned.

QUESTION: You really didn't dea? with the force method of

structural analysis and did not refer to the force method of getting the

stiffness element. Would you explain why? Paul Denke has warned us

that the stiffness method can fail due to loss of numerical significance

when element stiffnesses vary greatly. Experience at rather

crucial times in development programs has indicated that this
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does happen and the force method, again according to him, is not subject

to this sort of failure. I think this is a fact we should z,.t least continue

£ to recognize.

GREENBAUM: I'm afraid that my experience with the force method

is rather limited. However, many people believe that the force method

is extremely hard to use. The displacement method, on the other hand, is

a lot easier to use and yet is more general, and hence they tend to use it.

If there is a force method exponent in the audience, I'd prefer to leave it

to him to answer that.

COMMENT: Perhaps the following remarks will help. We set

Ir up equilibrium conditions and continuity conditions within the total structure

at a finite number of node points, using a finite number of force variables

and a finite number of displacement variables. We can set up the governing

equations for this system consisting of equilibrium conditions and displace-

ment continuiti conditions at all the nodes of the structure. If we then

attempt to solvv the equilibrium conditions among the forces first and

thereafter the continuity conditions, we arrive at the force method. And

this method requires that we designate in one way or the other the so-called

redundant forces which Denke and others have accomplished by the so-called

structural cutter or automatic selection of the redundants. In the displace-

"ment method, the continuity condition is first resolved by the assumption

of a unit displacement and then the equilibrium conditions at the nodes

are set up in terms of the displacements. The elements which are used

in these two methods could be the same type. They do not have to be in

any way subject to the restriction that a force element has to be used in

62



g-7

the force method or displacement method developed element in the dis-

placement method. Once the selection of the redundants, which is the.

most difficult part of the force method, has been made, from that moment

on the force method is as easy to use as the displacement method. You

can always make a badly behaving structure or a well behaving structural

model in the two methods.

WALTON: Each chairman has been asked to close his session

with a summary of at least what he considers the important points raised-

From my own personal point of view the most important thing said was

Dr. Stein's statement in favor of shared computer programs. I concur.

I too believe that the test of use by many different people in different

institutions is the best way to hone a program to excellence. I would

add that mere distribution' of computer programs, however, is not

sharing in this sense. It is essential to share the experience with them

as well. A point in this connection which Dr. Stein did not raise but which

I think is impo-tant concerns the matter of confidence in a program, Too

often we find the situation where a program will actually have the capability

to provide us with information on which to base a better engineering decision

but engineering management will fall back on older and more conservative

methods of judgment simply because there is not a broad enough basis of

confidence in a new program. If a program is good and many people use it,

then many people know it is good and it becomes much easier to induce

management to actually cut metal on the basis of the program results.

It is noteworthy, I think, that both authors agreed on the existence of

basically three significant approaches to numerical analysis of shells.
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Finite elements, finite differences, and forward integraticn. I was interested

in Dr. Greenbaum's assessment that all three methods worked for the

essentially one dimensional problems, and that for this class of problems

all three are about equal in ease of application. I would like to note what

I consider an important exception to Dr. Stein's statement where he said

that the computer has not had much of an impact on analytical solutions,

that is, exact solutions. It was only through the advent of the

digital computer that it became possible to compute exact exponential

solutions of the eighth order equations for cylindrical shells as first pro-

posed, I think by Flugge, and implemented by Dr. Forsberg of Lockheed.

Finally, I think we should all take note of Dr. Greenbaum's evident feeling

and I did not hear it challenged that a truly adequate finite element does not

yet exist. I think we should before this week is out try to bring to the sur-

face the reasons why such an element is so long in forthcoming.
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A SURVEY OF SPARSE HATRIX TECHNOLOGY

Ralph A. Willoughby
IBM Thomas J. Watson Research Center

Yorktown Heights, New York

AJ.STRACT

Efficient techniques for handling sparse matrix calculations are an

important aspect of problem solving in a wide spectrum of applications. There

is a long history of mathematical development of iterative techniques for the

numerical solution of partial differential equations which will not be system-

atically surveyed here. Insrzad the emphasis will be an direct methods for

solving Ax-b for x where most of the elements of A are zero. These latter

techniques have arisen independently in such application areas as computational

circuit design, linee.ý programming, power systems, and structural mechanics.

Each application area Involves a certain set of special features relative to

sparse matrix problem classes. These features are exploited in program

packages to achieve a high degree of efficiency for the application. There

is an inner core of common mathematical and computational features, and an

important aim of this paper is to survey these "common features."

The comments in the paper concerning the interaction of sparse matrix

technology with the architecture of the hardware and systems software of

evolving information processing systems are those of the author himself. They

reflect his point of view as a long-time numerical atalyst aud computer iuser

in various large problem areas. Details concerning existing and planned

hardware and software systems are beyond the scope of this survey.

*
Extended version of invited lecture at the Conference on Computer Oriented

Analysis of Shell Structures, Lockliced, Palo Al o Research Laboratory 'August
1970) co-sponsored by Lockheed Missiles and Space Cor-pany, Palo Alto, California
and Air Force Fllght Dynamics Laboratory, W'right-Patterson Air Force Base, Ohio.
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I, IINTRODUCTION

The emphasis in this -,irvey is on recent developments in direct methods

jor solving sparse matrix problen2. The.se are a large number of computer

programs for sparse matrix calculations but only a relatively small number

of basic mathematical ideas underlying these programs. A primary objecZive

of this paper is to provide an understanding of these concepts.

The concepts underlying sparse matrix calculations fall into four

classes: (a) combinatorial analysis of the ordering of rows and columns,

(b) floating point oper-Li'.ns on scalars, vectors and matrices, (c) data

management, and (d) programming. Prograxmming is a critical aspect of the

efficiency of the sparse matrix calculations, but it is beyond the scope of

this paper to discuss progra~ndng details.

Frequent use is made throughout the paper of three letter mnemonics for

important concepts. A mnemonics dictionary iG provided in section 14, and this

also serves as an index for where these concepts are discussed. An extensive

bibliography and author list is also given in section 14. Three parts of the

bibliography are organized chronologically by subject. They are: E. Eigenvalues

and Eigenvectors, Sparse Mattices; F. Computer Architecture, Parallelism,

Memory Hierarchy, Data Management; and 0. Preserving SparSeness. There are

119 more references and these are listed in alphabetical order of the first

author.

The primary motivation for a number of people working in sparse matrix

research has been the computational design of large scale integrated circuits.

This work will be discussed briefly in section 2.

Problhm modeling is an important related concept, but will only be mentioned
in passing in this paper.
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Success with this part of sparse mtrix technology led to an investigation

of other application areas. Literauare search and personal contact focused

the author's attention on linear programming [73], power systems [91], and

structural mechanics [103]. It became clear that cross fertilization in the

fieid of sparse matrix computations would be very useful. Thus, a Symposium

on Sparse Matrices and Their Applications was held at the IBM Research Ce.nter

on September 9-10, 1968. The table of contents for the proceedings [112] is

given in section 3, along with the table of contents for a similar conference [78]

organized by the Institute of Mathematics and Its Applications and held at Oxford

riversity, Englarn, April 6-8, 10 . When refcw•ence is made to papers in these

proceedings, it is via the mnemonics SMO ('parse Matrix Oxford conference, p. 3.2)

and SW (Sparse Matrix Yorktown conference, p. 3.3).

Algorithm preliminaries are presented in section 4. .., section 5, the

following algorithms are discussed: Crout Triangular Factorization, Row

Gaussian Elimination, Product Form of the Inverse, and Elimination Form of

the Inverse.

Sy•mnetric matrices are the subject of section 6, and band matrices together

with band-like domains are discussed in section 7. Some comments are also

made in section 7 about certain itetative methods. Those aspects of graph

theory which directly relate to the ordering problem for sparse matrix calcu-

lations are discussed in section 8. Partitioning techniques are considered

in section 9.

If Pivoting For Size (PFS) is involved in a disorderly sparse matrix,

then the tradir'tal strategies for pivot choice are often repiaced by threshold
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pivoting. This ie especlally true in the linear programming area. There

is as yet no adequate treatment for the error analysis associated with this

strategy. However, a sketch of the general error analysis situation in

num.erical linear algebra is giien i:. section 10. Also, a detailed discussion

of matrix reducibility is included here, since it is related to some aspects of

error analysis.

Sections 11-13 concern various aspects of the relationship between sparse

matrix technology and the architecture of the hardware and systems software

for information processing systems.

At least, as far as the author is aware of in the existing literature.
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"2. SPARSE MATRICES IN NETWORK DESIGN

A novel approach [41] to the numerical treatment of sparse matrix problems

has been motivated by computational design of large scale integrated circuits.

This section is devoted to a discussion of the sparse matrix technology asso-

ciated with a special class of computational design problems; namely, the

optimal design of transistor switching circuits [41; G-46].

The technology is aimed at achieving efficiency in the numerical iolution

of time dependent ordinery differential equations. One does not necessarily

have the property of diagonal dominance nor of symnetry. Moreover, the coeffi-

cient matrix can have a highly irregular sparseness pattern. This level of

generality in the coefficient matrix is also present in the sparse matrix

problems for linear programeing.

The computational circuit design problems have a special feature; namely,

the sparseness structure of the coefficient matrix is fixed over a large

number of cases. The systematic exploitation of this feature has resulted in

a high level of efficiency for the computational design programs which use

this sparse matrix technology.

In the subsequent paragraphs, a brief description is given of the mathe-

matical aspects of the computational design of transistor switching circuits.

One is concerned in these problems with determining how thi transient switching

behavior depends on a vector of design parameters, p, and modifying p so

that the behavior is "optimal." This behavior is characterized by the solution.

C-46 means reference 46 in #..a Preserving Sparseness part, G, if the biblio-
graphy at the end of this paper.
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w w(t), to the initial value problem,

= £(t,w,p) (2.1)

on the time interval, t0 <titF. Associated with (2.1) is a criterion

function C - C(p) > 0, and the aim of the analysis is to determine the vector p

which minimizes C. In order for optimization studies of this type to be feasible

for realistic circuit models (e.g., 100-1000 equations in (Z.1)), highly efficient

numerical integration techniques e :e required.

The system (2.1) was usually stiff (i.e., there were widely different

time constants in the system), and, as a result, predictor-corrector and explicit

Runge-Kutta methods were not suicable. Liniger and the author proposed [56),

along with others (see (561 tor references) the use of an "essentially"

unconditionally stable integration formula for (2.1) of the implicit form,

wn+l - ahý n+1 R, (2.2)

where R involves w, * for t<t nand tn+l t + h. The nonlinear system

whr- ivlesw frtt, tn xi

(2.2) must be solvced by a strongly convergent method, and Newt..n's method

was proposed.

(I- ahJ(k)) L. R + "hý4 (k) (k) (2.3)

In+1 - wn+1 ,

In order to control the growth of roundoff error, Ac is important to solve
first for %,w in (2.3) and the,: find tae new w from (2.5). The form '2.3)
is closely rel:,tod to the ntcthoe of Ite'ative Refinement (64, 66] for linear
algo.briic equnlaions, and this wi01 be Ci-cussed later in sections 4 and 10.
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(0) (2.4)
n+l 'n'

(k+l) (w<) +bw, (2.5)W n+1 " n+l I 25

w'.re J - af/Bw - Jacobian Matrix. In [G-46], a similar approach was adapted

to a modified form of Gear's method.

It has been repeatedly shown that this strongly implicit approach greatly

,elaxes the conditions controlling the choice of At - h. Efficiency of the

method depends critically on the ability to solve (2.3) fast, reliably, and

automnatically.

System (2.3) is of the form

Ax - b, (2.6)

and, fortunately, the coefficient matrix, A, is usually sparse. Moreover,

(2.6) will be solved a large numer of tites, but SSI(A)*(Sparseness Structure

Information of A) is fixed, and this has been an important aspect of the sparse

matrix technology developed in this area.

C. W. Gear, Proc. IFIP Congress, Edinburgh. Scotland f.1968) pp.A81-A85, [128].
**That is, the number N(A) of nonzero elaments if A is <<n 2 , where A is an

nxn matrix.
For notational convenienice, SSI(A) is often represented by the Boolean Sparse-

ness Matrix (BSM) associated with A, where 1 means nonzero. In sparse matrix
programs, however, a Threaded index List with Pointers (TLP) is more appropriate
[72]. See also Zollenkopf's paper SMO-6 [78].
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The matrix A is not positive definite symmetric nor is it diagonally

dominant. Moreover, SSI(A) is arbitrary. However, if one fixes, a priori,

the order in which the equations and unknowns are processed in Guassian

elimination or in triangular factorization, then the entire sequence of

machine operations needed to solve (2.6) is aleo determined, a priori, simply

from SSI(A). The sparseness in b could also be utilized, but usually b is

considered full.

Let A - LU where L - (9 ij), 't = 0 for J>i (lower triangular), U - (u j),

-i u u 0 for J<i (unit upper triangular). It is convenient to introduce
ij

a composite L\U matrix as C - (c ) where c 9i for Jji and c - uij forii i i ii i i
J:i. Each element of C is generated by a single formulaC

m-1
c ij ( -3 k1cik c kj)d (2.7)

c k-l k

where m = min(i,j) d 1 for i>J, and I - c-c if i<j. If ai- 0 and,
ij

for l<k<m-l, cik Ckj - 0, then c j is "logical f zero." Otherwise, a reduced

formula defines c ij. In this fornmla only nonzero numbers occur.

Gustavson created a highly efficient Symbolic Factorization Program (SFP),

GNSO (GeNerate SOlve) [40]. GNSO uses SSI(A) to generate a linear (loop-free)

code SOLVE, which is specifically tailored to the zero-nonzero structure of A.

Only nonz,..o quantities are stored and processed. SSI(C) and operation counts

in SOLVE are biproducts of GNSO. GWSOIN is similar to GNSO, but useq TLP's to

represent SSI's. A FORTRAN listing for GNSOIN is available upon request to

s k - 0 by definition if 8<a.
kna
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S Gustavson. These ideas have been refined and extended in [G-46].

The program SOLVE can be very long, and as a result, Chang (112, pp. 113-

122] created a program SFACT, which uses SSI(A) to generate SSI(C) in the

context of the Row Gaussian Elimination (RGE) programs developed by Tinney

and his colleagues [71, 72, 83, 98].

Developments of this type and others have resulted in vastly improved

network analysis programs and work is still continuing in this area. However,

much of the work done is of a general nature not particular to network design

and can be utilized in other application areas. In particular, computational

design in engineering is, itself, a vast area which can greatly benefit by

advances in sparse matrix technology. It is expected that these advances will

continue for many more years.

Presented at Zhe Sparse Matrix Yorktown (SMY) conference. The table of contents
for the proceedings [112] are given here In section 3 along with the contents
for the proceedirgs of the Sparse Matrix Oxford (SMO) conference (78].
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3. SPARSE M•rRIX SYMPOSIA

Sparse matrix problems play an important role in a num.ber of application

areas; e.g., (a) Partial Differential Equations (PDE's) [28, 101, 102], (b)

electronic circuits [16], (c) linear progranriing [73], (d) power systems [91],

and (e) structural mechanics (103]. Sparse Matrix Algorithms (SMA's) have been

extensively developed in each application area, and special features have

been exploited in program packages to achieve a high degree of efficienf.y.

There is, however, an inner core of conmon features, and two recent sparse

matrix symposia 178, 112] were organized to heip idantify some of these

features and to survey the field of sparse matrix methods.

Certain important topics were basically not covered in either symposium;

e.g., (a) SMA's for PDE's,* (b) eigenvalue, eigenvector calculations [E-Rl],and

(c) error analysis [109]. However, many i'iportant topics relating to sparse

matrix problems were covered, and certain of these topics will be discussed

in other ,,ections of this paper. As an aid to the reader and for referencing

purposes, the tables of contents are given on the succeeding pages for the

two conferences.

Weinstein [112, pp.139-148] presented a paper on Stone's method [22,23,93,104]
for solving certain classes of PDE's.
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SMO - SPARSE u.,:RIX OXFORD CONFERENCE PROCEEDINGS [78]

Large Sparse Sets of Linear Equations

J. K. Reid (Ed.), Academic Press, London (1971), organized by the Institute
of Mathematics and Its Applications, and held at Oxford University, England
(April 1970).

TABLE OF CONTLN'TS

1. Beale, L., Sparseness in Linear Programming.

2. Allwood, R., Matrix Mechods of Structural Analysis.

3. Larcombe, H., A List Processing Approach to the Solutiou of Large
Sparse Gets of Matrix Equations and the Factorization of the Overall
Matrix.

4. Walsh, J., Dirczt and Indirect Methods.

5. Ashkenazi, V., Geodetic Normal Equations.

6. Zollenkof, K., Bi-factorization - Basic Computational Algorithm
and Programming Techniques.

7. Jennings, A., Tuff, A., A Direct Method for the Solution of Large
Sparse Symmetric Simultaneous Equations.

8. Baumann, R., Sparseness in Power System Equations.

9. Churchill, M., A Sparse Matrix Procedure for Power Systems Analysis
Programs.

10. Harary, F., Sparse Matrices and Graph Theory.

11. Tewarson, R., Sorting and Ordering Sparse Linear Systems.

12. Baty, J., Stewart, K., Organization of Network Equations Using
Dissection Theory.

13. Carre, B., An Elimination Method for Minimal-cost Network Flow Problems.

14. de Buchet, J., How to Take into Account the Low Density of Matrices to
Design a Mathematical Programming Package. Relevant Effects on Optimi-
zation and Inversion Algorithns.

15. Ogbuobiri, E., Sparsity Techniques in Pcower-System Grid-Expansion
Planning.

16. Reid, J., On the Method of Conjugate 6%.. a2nts for the Solution of
Large Sparse Systems of Linear -quations.

17. Willoughby R., Sparse Matrix Algorithms and Their Relation to Problem
Classes and Computer Architecture.
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SHY - SPARSE MATRIX YORKTOWN CONFERENCE PROCEEDINGS [112]

Organized and sponsored by the Mathematical Sciences Department, and held at
the IBM Thomas J. Watson Research Center, Yorktown Heights, N. Y. (Sept. 1968).

TABLE OF CONTENTS

1. R. A. Willoughby, Introduction xi - xxi
*

2. F. G. Gustavson, W. M. Liniger, R. A. Willoughby, Symbolic
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*
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Sparse Matrix Techniques in Two Mathematical Programming Codes. 85 - 100

11. E. L. Palacol, Tle Finite Element Method of Structural Analysis. 101 - 106

12. P. Wolfe, Trends in Linear Programming Computation. 107 - 112
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14. W. M. Liniger, R. A. Willoughby, Efficient Numerical Integration
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15. D. M. Smith, Data Logistics for Matrix Inversion. 127 - 138

16. H. G. Weinstein, Iteration Procedure for Solving Systems of
Elli! -c Partial Differential Equations. 139 - 148

17. r. canin, Jr., Computer Methods of Network Anallsis. 149 - 154

18. C McCormick, Application of Partially Banded Matrix Methods
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,rchard-IHayve, ':. F. Tinney, Par" Di..cussion on New or Needed

:k and Open Questions. 159 - 184
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4. ALGORITHM PRELIMINARIES

A. General Remarks

There are a large number oi methods which take advantage of special

properties of the coefficient mr.itrx, but if A is simply a general nxn sparse

matrix, then there are thrue main types of direct sparse nmatrix algorithms for

solving Ax=b for x. These are based respectively on Gaussian elimination,

triangular factorization, and Gauss-Jordan complete elimination. There are

methods basad on orthogonal transformations, such as the QR method [E-l,-2]

which are very important for eigenialue-eigenvector calculations, but they

are not, in general, economical when applied to unsystematically sparse matrices.

Each direct algorithm has two stages: FIN (Form of the INverse) stage,

that is, the factorization or transformation of A into a form appropriate

for repeated application of the second stage; (2) SUB (SUBstitution) stage,

that is, the applying of the FIN(A) to the vector b.

Even if there is a single right hand vector, b, the SUB stage is often

applied repeatedly because of the method of ITerative Refinement (ITR) [64,66]

which will be described later in this section.

If it were true that A-1 is sparse, and many SUB stages are to be

performed, then it would be an easy matter to code a sparse matrix-vector

multiplication and then form x A-lb. However, A71 is logically full unless

A is reducible; that is, unless B - P IAP2 is Block Lower Triangular (BLT) for

some pair of permutation matrices PI,P 2 125,113; G-6,-l0,-l1,-20,-29].

Sparse Matrix Algorithms (SMA's) are de=igned vo preserve sparseness in

FIN(A) in the context of numerically stable pivoting. Matrices which are

That is, a few applic,.tions of ITR are sufficieut to achieve desired accuracy
in the solution vector.
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DID (Diagonally Do..inant) or SYP (SYr.netric and Positive definite) have the

desirable feature of allowing diagonal pivoting in any order. Here the order-

ing to prv.sirve sparseness (see part C in the bibliography at the end of the paper

for references) strategies can be applied a priori to SSI(A), This is followed

by PDI): (Plivoting dcown the Diagonal in Natural order). If, also, SSI(A) is fixed

over a large number of cases, then SFP's are important.

For some classes of problems PFS (Pivoting For Size) is required, and many

SMA's have a PFS version. Of course, for PFS to be effective, the matrix must

not be poorly scaled.

A SMA designed to solve Ax=b for x can be extended to solve AT zc for

T T T T
z, where A is the transpose of A. The system A z=c is the same as z A c

so in the second stage, one replaces column SUB by row SUB.

B. Goals of SMA's

(1) Avoid operating with and storing zero floating point numbers.

(2) Order equations and unknowns to achieve efficiency in operations

count and/or access to information (data and code).

(3) Achieve sequential memory referencing both at the eleiaent

and at the vector level.

(4) Have efficient methods for handling the data managemený aspects of SMA's.

This is especially true for SYI(SYmmctric Indefinite) matrices [13,14; E-8, -2511
and foe the calculation of eigenvalues and eigenvectors by the method of INI
(INverse Iteration) [E-Rl, -18].S~**

Thus the usual A(I,J) notation is replaced by A(K), say, where A(K)#O.

The simplest schemes store and process the nonzero ai 's row by row or column
by colu.mn, but other schemes, such as rows on one side 6f the diagonal and columns
on the other sidc, ire also used.
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(5) Incorporate automatic segmentation for efficient use of surial backup

store on large problem's (see section 12, and part F of the bibliography).

(6) Exploit special propecties of the matrix and/or the problem class.

C. Basic Macro-Operations (MOP's)

a - ,a -aY/6 , (4.1)

a ( -v Tw)p , (4.2)

V V-ow , (4.3)

T T T
v T+ v -ow ; (4.4)

where a,S,y,6,a are scalars; p-i or p-6 (6=pivotr; v,w are column vectors;

T
and v w = Ev iwi= inner product.

MOP (4.1) is the classic element transformation which is used in each pivot

step for Gaussian elimination, whereas (4.2)-(4.4) are vector oriented MOP's.

MOP (4.2) has the advantage of requiring only one temporary extended register

(or storage location(s)) to hold the accun:ulatio;i of extra precision product,.

viwi. On the other hand (4.3) and (4.4) are inherently parallel. MOP (4.2) is

basic in the FIN stage for triangular factorization, whereas it is (4.3) or

(4.4) in the FIN stage of Gaussian or Gauss-Jordan elimination. Which of the

MOP's are involved in the SUB stage depends on the type of substitution (row

or column) and on how the matrices Involved in the FIN(A) are stored.

* "" meais "is the result of evaluating" as in the programming language APL [47].

This language has many features which make it desirable for representing SMA's
and other algorithms which deal with arrays as uell as a variety of numbers such
as integers, Boolean 0 and 1, and floating point. APL\360 Primer Student Text is
available through IBM branch offices. Note that expressions (4.1)-(4.3) are not
"pure" APL expressions as they stand, since it is not assumed that the reader
knots the powerful operation set and conventions associated with APL.
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If v is being processed repeatedly via (4.2)-(4.4), then it is a common

technique to store v as a full vector, .eros and all. In this way one can

execute (4.2)-(4.4) by merely indexing over the nonzero components of the sparse

vector W.

D. Method of Irerative Refinement (ITR) [64,66]

Assume one ia solving Ax-b for x and an adequate FIN(A) has been formed,

then ITR proces~ds as follows:

(1) Given an approximate solution -(k) (e.g., take x (0) 0), form

r(k) = b -Ax(k) (4.5)

and exit if r(k) and/or x(k) is satisfactiry, otherwise go to (2).

(2) Apply SUB stage to F*N(A) to solve for Ax in

AAx - r (k) (4.6)

(3) Set x(k+l). x(k) + Ax, then go to (1).

E. Elementary Matrices [46, p.3].

The rank one matrix wv , whose (ij) element is wivj, pl -, number of

important roles in numerical linear algebra, and is especially important when

used in the form of an elementary matrix, I + wvT, where I is the identity

matrix. Note that, if E - I + wv T, the.n 6(E) - determinant of E - 1 + V Tw.

-1 T .T -Moreover, if 6(E) 0 0, then E - I -pvv where p - (1 + v w)-I.

One class of applications for elementary matrices are the Methods of

Modified Matrices (MMM's.) [4,8,116-119; 45, pp. 79,83,84 ****. There is a special

One purpose of ITR is to obtain an assurance that FIN(A) is adequate, and the
other is to repeat ITR until a satisfactory x is obtained.

**•
**It is important to forn, b-Ax (k) in extended precision because of numerical

cancellation.

That is, every 2x2 submatrix is singular but at least one element is 0 0.

This is an aspect of liron's method of tearing [52: G-l,-2,-3,-4,-5,-7,-19,-20;
sMo-1,'; sHY[-8].
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sparse matrix version of a ,DIt which assumes that rIN(A) has been formed and

that

T
H - A + wv . (4.7)

The algorithm for solving Mz c for z then proceeds as follows:

(1) Solve Ax=c and Au=w for x and u resper.tively. Comment. Note

that, M=A+wv - A(I+uvT), and, if (I+uv T)z - x, then Mz-c.

(2) Form a x and 8 - vTu. If 1+8-0, then exit with message, "M is

singular," otherwise go to (3).

(3) Form a (1+0)-l a.

(4 ) Form z m x-au and exit normally. Coument. z - (I+uv T)-x -

-1 T)
(I-(l+O) uv )x - x -ou.

An important special class of elementary matrices are those which involve

only one nontrivial column or one non-trivial row; that is, when v7 is a row of

I or w is a column of I, respectively. As is customary, one lets ek

represent the kth column )f I

One has in particular the class of Elementary Column Matrices (ECM's)

whose properties are described below.

(1) Let t = (tlk,..,tkk,...,tnk), and

T tITk - 'k .. .

,- - - !

One also has EEM's, but only 'CA's are dcscrlb-.d since they have been the bnck-
bone ot linear programming ali:ori,:'.s [62,73; 75, vol.2, pp.271-284; G-31].
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Coument. Tk= I + (tk-ek)ek , Tkej a ej for ilk, and Tkek e tk.

(2) Assume k 0 and let Okm tkk • then Tk is nonsingular, and is

trivial to form. In fact,

T I k) (t Dk -

- (I -t' eT)D

where t k -tkkek , a knd D a diag. (1,..,l,p ,1,.l) That is,

"k k

(3) Column SUB. If c = T then c is calculated as follows.

(a) Let a - Pkbk - ck. If a 0, then c-b, so assume a0O.

(b) For Jik, c j b1 -atjk.

Comment. MOP(4.3) is involved here.

(4) Row SUB. If cT . b T kI, then cT is calculated as follows.

(a) If Jik then c j b V

(b) ck = (bk bTt)

Comment. MOP (4.2) is involved here.
(5) Column MbI. Let A'ej a Ae for Vk while A'e k - and

Ae - a 0 aý; that is, the kth column of A' is a', otherwise A' is A.

Algorithm for solving A'z - c for z proceeds as follows:

(a) Solve Ax=c and Atk- a'. for x and t,. respectively. Comnment.
k

"Define Tk as in (1).[ °

6. ..2. : • _ . . - . . _ _ . .. . • .. . . . .. . .. /



(b) If tkk= 0 then At Is singular so exit with res.;e, otherwise

go to (c).

(c) Form z - TkX. Comment. T k is zorme= no in (2) and z is formed

according to (3), then z T x T(A7c)0 (A')- c.
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5. SPARSE MATRIX ALGORITIDS (SMA's). GENERAL CASE

A. General Remarks

In the FIN stage of SMA's there are two pivoting situations, namely

(1) PDN (Pivoting down the Diagonal in Natural order) and (2) PFS (Pivoting

For Size). Wilkinson [1'-Rl, pp. 225-227] has a TRiangular Factorization (TRF)

method with interchanges, which Forsythe (29] published as an algorithm for

the full matrix case. The disorderly sparse matrix is not well adapted

to PFS versions of triangular factorization, but, by keeping row and/or column

permutation lists the other SMA's can be adapted to certain PFS strategies.

B. Notation

A = (au) l-',j<n

L (il), tij=O for J>i (lower triangular)
ui- 1, uijO for J<i (unit upper triangular)

C = composite L\U matrix = (cij)

2Eij for ji

SU uij for J>i

D - diag. (.ii,O22', ... ,9nn) diagonal matrix of pivots,

W - LD-I - unit lower triangular matrix

R - DU - upper triangular matrix

A - LU- WR - WDU.

C. Crout Triangular Factorization

(1)FIN Stage. l,<ý<_n, m<i~n, m4-1<Jjn (m~n),

Band matrices (see section 7) are another case which has been considered [E-8].

As befor-: S - 0 by definition if a<a.
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M-.L

S.-- A -, -, - . . -( Y - -

(2 Fowr SUB Ly- --- -b, 1<m

M-i
u j - JliikUkm'

"tm ai;m Izk

Uj (a1,J YL mkI kJ)Pim

(2) Forward SUB. Ly ,'b, liinn,
m-iYm=(bi -k l) kk)m

(3) Backward SUB. Ux - y, n>i.>,
nX m a Ym - k 1 -1Umkxk"

D. Row Gaussian Elimination (RGE).

Remarks. Here, A w WR, and all storage and processing for A, W, and R is

by rows. W is formed element by element, and MOP (4.4) is used repeatedly in

the FIN stage (this is commonly called the elimination stage in RGE). Column SUB

is the most common situation, and since W md R are stored by rows, forward

and backward SUB has (4.2) as the basic MOP. Only the FIN stage is outlined

below.
1T a

(1) r1 T aT

T T
(2) For 2<k<n, V 4- T

(a) For 1<.jk-l,

wkj = iir~,

4-VT T

V -wkjrj ;

(b) wkk -1, wkj - 0 for J>k;

k

T T T
Let ak - ekA - k row of A, etc.
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E. Product Form of the Inverse (PFI) 4

(1) FIN stage. T T T A I;
n 21

S(a) tI at ^ 3el,

(b) For 2<k<n,

tk = T T ak where ak A
k k-I 1 k k k

(2) SUB stage (column case)

x - A7'b - *- T- b.3
n 1

F. Elimination Form of the Inverse (EFI)

(1) FIN stage: L-7 L. 1 A- U;
n

(a) L - T1 as in PFI;
_ ~ -1_ -

(b) For 2 <k<n let vk Lk 1 " L 1 ak where ak- Aek then

u Ujk for j<kI _

Z jk Zk for j>k;

LkE k

' 1

LI
(c) By a trivial factorization

UwUn . . U2

where

Elementary column matrices (see section 4, part E) are the basic tools in tle

PHI algori thin.
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112) SUB stage (column case)
A-lb U-1 U-1 L-1 L b.

Remarks. The S FI algorithm as presented is column-oriented. However, if one

applies the transpose operation to each formula in the factorization stage of

algorithm F above, the result is a row EFI algorithm, which is an alternate

way of handling RGE. Elementary row matrices which are either upper triangular

or unit lower triangular are the basic operational tool in rot: EFI.

The PFI algorithm has an elegant simplicity ir, its formulation, but it has

the sparseness structire of L\U-l rather than the preferred L\U of the other

algorithms discussed here [G-43].

G. PivotinR Vor Size (PFS)

Remarks. PFS has been a critical aspect of algcrithms for matrices which

are neither positive definite symmetric nor diagonally dominant. The computa-

tional price one pays for this in dealing with full or band matrices is reasonable,

but where the sparseness structure is arbitrary, this is not necessarily the case.
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Care must be exercised in choosing pivots to also preserve sparseness. Clearly,

zeros and near-zeros connot be used as pivots, so 6ome threshold criterion at

least is necessary. This threshold approach has been otandard in LP calculations.

In full matrix and band matrix algorithms, one has two options. The first

is to interchange rows and/or columns to bring the mth pivot element into the

(mm) position. This option has the advantage of simplifying subsequent indexing

operations. The second option leaves the elements in their natural location

and builds instead a row permutation (•'1, 2, . and/or a column permutation

(v 1 ,v 2 , ... ,vn) where (vvm) is the position of the mth pivot. This requires

more involved indexing, but has the advantage of not requiring the interchange

of compacted vectors of different length.

For simplicity PFS will be discussed only for the PFI algorithm, but a

similar extension can easily be made for the RGE aud EFI algorithms. The Crout

algorithm is less suitable for this purpose when sparse matrices are involved.

The PFI algorithm with PFS is essentially the same as for the one given.

th thexcept that at the k step, one deals with column v of A and with the P

component of this vector as the pivot. The nontrivial column of Tk 1 is the

Ukh. After n steps, the A matrix has been transformed into a permutation, P,

of the identity matrix, that is

A p T1 T,

iIwhere for lck<n, i v- k lJj vks

P e e
j
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and

P e

sr •
sir ce

p-l A 4

!,e v j-ermutation is iurroduced to. partially preserve sparseness in the

-.m o: -,' . r . . For .xamplc, one could process the columns in order of

in--reasinp ,er of nonzeros in each column. Becauae of the L\U- 1 sparseness

structure of the form of the invcr, e in the PFI algorithm, a standard practice
,

in Lr as been tr, reorder rows and columns relative to singletons to reduce

the matrix .o tbh-- special block lower triangular form shown below.

*- o. zeros

zero
or

nonzero

A71 also has this same form, but, in fact, only the kernel matrix M has to be

factored if the PFI algorithm is suitably modified. The set of SMA's presented

here certainly do not represent a complete list, but thay provide insight into

the character of SMA's for the general case.

A singleton row (colurn) has exactly one nonzero compone.t. As in Gaussian

pivot reduction, one strika- •ut the row and colurn of the pivot element and

continues to search for singletons.
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S~~6. SYFB4ITRLC MATIR1C:S

A. General Remarks

If A - AT (i.e., a~j - ajj) and diagonal pivoting is feasible, as in the

case of positive definite or diagonally dominant matrices, then considerable

saving can be achieved in both storage and operations count. However, in the

case of sparse matrices, this requires more intricate indexing because both row

and column access to elements is required in th6 factorization stage.

It is interesting to note that, if A ia even symmetrical in sparseness

pattern and diagonal pivoting is feasible, then advantage can be made of this

in the design of a factcrization algorithm. This is the motivation for

Zollenkopf's Bi-Factorization (BIF) Algorithm [78; SMO-6] in which he operates

on the left of A by a sequence of elementary column matrices, and at the

same time, on the right by a sequence of elementary row matrices. At the

end, A has been transformed into the identity matrix, and one thereby has

created a Form of the INverse (FIN). This is similar in character to Markowitz's

Elimination Form of the Inverse (EFI) [62] and is an extension of techniques

pioneered uy Tinney and his colleagues [G-14,-34;71,72]. Zollenkopf's article

is very detailed, with flow charts, diagrams of the various matrices and examples

of handling SqT's via Threaded index Lists with Pointers (TLP's).

T TA
As before, let A - LU - WR WDU. Since A - AT, then W - UT, and thus

u wi A Z If p > 0 for lj<_n, then one also has the

- T 1/2
Cholesky factorization, A - GGT, where G - WD The main point of using

*In Power System Analysis [91] A is often complex symmetric with diagonal

dominance.

Which are also lower triangular.

Which are also unit upper triangular.
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the Cholesky factorization over A U DLU is that ViP(T+C-ý "'(l+ E) so that

one achieves an extra bit of sirnificancc in the pivots. This has to be balanced
J

against the extra cost of calculating Z.' instead of I. if E. < 0

or is complex, then the r'quare root approach is not considered.

T

B. A =U DU F'actorization

(1) Remarks. The upper triangular portion of A will be stored and

processed row by row. As the processing proceeds, the diagonal

jelement a is replace~d by PM 9 and am is replaced by
M ~mm m

I for m+lýJ~p. Recall that

M-11

jm jm k jk ukm

and that uk Z t Ck The element uk will be formed when it is

first needed, 3nd it will then replace , which is no longer needed.

The diagram below illustrates this scorage situation.

L

'-49 jkj
I ~I

I 'A

Only a full mratrix version is presented since the sparse -matrix algorithm
requires r.iore detail than is suitajble for a survey such as tlV'.
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(2) Details of Alrith!.
-15

a. P€ al"
b. kl =alk for 2<k<n.

c. DO for 2<m'nn

1 IX) for mrk-n, c a

2) DO for lk<•t-l;

a) d m k,

b) DO for m<Jjn,

ci = C -Z d,
j jk

c) uk. -d (stored in (k,m) location in place of 2r.).

3) Pm Cm-1 (stored in (m,m) location in place of ao)

4) DO for m4-]<k<n.

tkm ck (stored in (m,k) location in place of ak).

Comments. The quantities, Ck, :n<k<n, are the partial accumulated

inner products. For accuracy purposes it is desirable to use

extended precision in the formation and storage of the c k'S.

C. Conjugate Gradients Method (CGM)

Reid [78; SMO-161 wrote the following in the introduction to his paper on

CGM.

"The method of conjugate gradients has been known for some time, having
been developed independently by E. Stiefel and by M. R. Hestenes with the
cooperation of J. B. Rosrer, G. Forsythe and L. Paige, but it has received
little attention recently. It is difficult to see why this has been so since
the method has several very pleasant features when regarded not as a direct
method for the solution of full systems -ý equat.ons but as an iterative
method for the solution of large and sparse systems. It is our purpose here
to explain these features and to report on some numerical experim'ents which
compare the various versions of the algorithm that are available."

Comment. p ,u have been formed for lk<m-l, k+l<n, k+l<i<.-l, but jk

is needed now ohy yotr mj<jfn.
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Livesley [57, p.37] found difficulties in using CG'I in structural

problems. Others seem to have found difficulties which caused them to abandon

CGM as a basic sparse matrix algorithm for SYP (SYmmetric and Positive definite)

matrices. Stanton and his colleagues, on the other hand, are systematically

developing these methods for structural mechanics problems [33, 92]. They

report that preconditioning via scaling of the coefficient matrix is an

important practical consideration.

Assuming that CCX can be made numerically insensitive to accumulated

round-cff error, and can achieve sufficiently accurate results in a reasonable

number of sceps, then CGM has an attractive feature of effectively utilizing

the sparseness of the A matrix, no matter how irregular the sparseness struc-

ture is. There are only three basic macro-operations involved in the calculation,

T
namely, v*-Av, a= w v, and v+v+5 w. Here again, one would treat v in each case

as a full vector but store A compactly row by row.

Further discussion of CGM is contained in [7, 19, 20, 34, 35, 43].

D. SYnmetric Indefinite (SYI) Matrices

If - M T but H is neither positive definite nor diagonally dominant,

then the problem of solving Mx - b is more complicated. Of course, one can

ignore the symmetry property of A and proceed to PFS [E-Rl]. How-

ever, more storage and operations are required by thic approach. A different

approach has been taken in [13, 14]. Here, one applies a mixture of scalar

and 2x2 block diagonal pivoting so chat symmetry is preserved in the reduction

process. This approach has been shown to be stable when the proper care is

exercised in the choice of the 2x2 blocks.
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An interesting PFS strategy is discussed in [E-25] for the case in which

the coefficient matrix is of the form M - A -XB where X is real,

A and B are real band sym-.etric, and B is positive definite. The pivot-

ing is stable but, also, tae product of the first k pivots is the determinant

of the t.rst k rows and columns of N1. The Sturm sequence property is then

used to determine the number of eigenvalues which are greater than X [E-Rl,

p. 3 0 0].

I
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7. BAND MATRICES AND BAND-LIKE DOMAINS (BLD's)

A matrix A - (ajj) is said to have bandwidth 2k+l if k is the smallest

index such that a ij- 0 for li-jl> k. A bandwidth of 5 for an 8W8 matrix is

shown below.

Sd 12  a1 3

"21 a22 '12J a24

*31 a3 2  '33 '34 35

Aa 4 2  a 044 45 a4 6

a53 a 5 55 a5 6  a57

a64 '.5 66 a6 7  *68

a75 a76  1a 7 7  a78

a 86 &87 '88

Band matrices are an important special class of sparse matrices, and many

efficient algorithms have been developed [36, 63, 82, 95, 97; E-Rl, -8]. If

A allows PDN ther. the algorithms are especially easy, and if aij 0 0 if and

only if li-Ji < k (fu'll bands), then* SSI(C) - SSI(A).

Assume PFS is involved, but that the mth pivot position is chosen from among

the positions (i,m) where m<i<mik, then in the worst case, the semiband width

above the diagonal in U is doubled [E-8, -25].

Of course, one ignores the generation of zeros by exact numerical cancellation
in dealing with SSt's.
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If a high level of storage and operational efff~ciency is desired, then

band matrices are too restrictive a class for many sparse matrix applications.

Again, assume A allows PDN, then the following Band-Like Domain (BID) for

A is a useful sparse matrix generalization of band matrices.

Definition. Assume _<m<n then

(1) (em) c BLD(A)o

(2) For ,l<_<m, (p,m) e BLD(A) if and only if aim 0 for some i such

that li<ii_.

(3) For l<vy<m, (re,v) c BLD(A) if and only if a m? 0 for some J such

that l<j<v.

This domain i.s indicated, for a typical m, in the diagram below. A denotesS

the BSM associated with A, where (A)ij - 1 means aij 0 0.

0
0
0
0

0

0 I
5!A~ oi 0O 001 10

I

I I

A and C both have only zeros outside BLD(A) but C may fill come of the zero

positions inside the BLD. In fact, for "tridiagonal plus" matrices,** the

entire BLD for C is full. The 8x8 example shown below illustrates this

Only the pertinent zeros and nonzeros are shown.

A tridiagonal matrix is a band matrix U10th k=l; the "plus" rcans that not
only is a j# 0 for li-,L<_ 1 but also for certain other positions.
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M

band-like character and tridiagonal plus fill-in.

77E~ 0

01 ~1~ 0 i0 1 1 o1o o 0 1I

s 0 0 0 1 1 1 1

0 1

Note that the tridiagonal plus sparseness structure is not necessarily preserved

under reorderings of the matrix A.

Jennings (48, 49, 78; SMO-7] has exploited BLD's in his algorithms for

SYP matrices. Melosh and Bamford [65] use a related idea in their wavefront

approach to data handling, and NASTRAN [58,59,60,112;SMY-18,pp.155-158] has an

active column feature for those columns where the nonzeros extend above the band.

Tri-Diagonal Matrices (TDM's) are, in many ways, an ideal type of soarse

matrix. A great many numerical analysis papers have been devoted to TDMts

(see E-Rl,-R2 for references]. TOM's are basic in many areas of numerical

The syr-bol 4 means a - 0, c #0.i9 ij
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analysis, such as eigen-.alue-eigcnvector calculations and differential equations.

Thiese matrices, tosether with the nore general class of Tri-Diagonal Like (TDL)

matrices are the cornerstone of the iterative methods referred to as Alternating

Direction Implicit, Splitting, and Fractional Step.

Definition. A is a TDL matrix means

(1) aij• 0O if and only if a jl 0.

(2) For l<m<n-l there is exactly one i such that m+l<i<n and aim * ami ' 0.

(3) A allows PDN.

Note that SSI(C) - SSI(A). See section 8 and [G-9, -21] for a graph theoretic

discussion of TDL matrices.

One solves multidimensional partial differential equations by cycling through

a sequence of TDL problems. See [10,21,28,39,61,101,102) for surveys and some

of the earlier references. This is a very active subject, and many articles

continue to appear in standard numerical analysis journals. The mathematical

analysis is largely limited to the case of commuting operators [106].

These methods are a part of a broad spectrum of iterative methods [l01).

T'-` tradeoffs between using sparse direct methods and various types of iterative

methods is rather poorly understood except for certain model problems [24]. For a

completely regular model problem, one can precisely estimate the computational

complexity as n 4 - where n is the order of the coefficient matrix. However,

this type of analysis can be misleading. If the model problem is the practical

problem to be solved, then there are special techniques such as the use of

Fourier transforms which can be used to achieve very high efficiency. On the

other hand, if the problem is irregular, then the computational corplexity as

,
That is, those which are based on the cor-putational efficiency associated wiLth

solving TDL systems.
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Sn -• • can be vastly different than that predicted by the model problem.

Stone's method (22,23,93,104; SMY-16,pp.139-148] holds considerable promise

for certain classes of problems. The idea here is to let M - A + N where N

is chosen to kill the propagation of nonzeros inside the BLD. Let M - LU, and

C be the composite L\U matrix, then NI is fuller than A but SSI(C) - SSI(A).

This has been shown t3 be an effective procedure fox sparse matrix problems

arising in the petroleum industry even for certain types of coupled systems of

partial differential equations.

The Finite nlement Methods (FLM's) provide a whole new spectrum of sparse

matrix problems which have a quite different computational complexity than

the finite difference methods. For one thing, the size of the matrix is much

smaller. However, the genr-ation of the i. trix elements is quite involved for

the more sophisticated classes of finite elements. In comparing computational

complexity of finite difference versus finite element methods, it is important

to define the problem class, and to determine the extent to which one time

symbolic preprocessing can be utilized in a parameter variation study. There is

"a vast literature associated with FEM's but is not referenced here. However,

"a recent report by Segethova [84] deals with direct sparse matrix methods for

matrices arising in FEM's.
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8. GRAPHS. ONDIIRECTED, DIRECTED, AND BIPARTITE.

There are a number of ways in which Sparseness Structure Information (SSI)

can be represented and manipulated. The use of Threaded index Lists with

Pointers (TLP's) is a powerful approach in the automatic machine computation,

but other representations are more suitable fron a conceptual point of view.

The Boolean Sparseness Matrix (BSM) associated with a given sparse matrix

A is one tool. fHowever, graphs of the sparseness structure have the advantage

of being invariant under certain classes of reorderings of the matrix A.

Graph theory is a vast field in its own right. References [42,77] provide

an introduction to certain applications of graph theory, and contain a large

number of referencee. However, only a small part of grpph theory impacts the

field of direct sparse matrix algorithms.

Three types of graphs will be described briefly; namely, undirected, directed

and bipartite graphs. A number of authors have used graph theory techniques

to develop pivot strategies.

Rose [79,80] has made a systematic study of the fill problem for matrices

with symmetric sparseness structure where diagonal pivoting in any order is

aglowed. An undirected graph G is associated with A . The vertices i ands

J, where i•j, are connected by an undirected edge if and only if a i 0. The

labeling of the nodes is not intended to imply the order in which the nodes are

eliminated. When a pivot sequence has been specified, there is associated with

This matrix will be denoted by As; (A 8)ij - 1 if and only if aiJ 0.

See v'rt G (Preserving Sparseness) in the bibliography for some of the
refe-.±nues.

•** AT
That is, A A

s s
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,I . , 5 x I ,%Z2 ,•4'--e ,,X "T,7' "

G, a graph G' which represents the sparseness structure for the C matrix

(i.e., the composite L\U matrix).

The diagram below illustrates a 6x6 example.

1i 0 0• ,0 1

1 0 1 0 0

A/
/

0 0 1 1 1 0 /
A " /

081 1 0 1 2 4

0 0 1 0 1 0

1 0 0 1 0 1

After "eliminating' vertex J, the vertices adjacent to j forr. a clique,

that is, the principal submatrix associated with the set of these vertices

forms a full matrix. From the graph it is clear that 5,3,4,2,1,6 is an optimal

pivot sequence, and only one new edge is introduced in creating C'. On the

other hand, the pivot sequence, 4,3,2,1,6,5 introduces 6 new edges and hence is

undesirable as a pivot strategy.

The vertex 5 has a special significance because only one vertex is adjacent

to it. Such terminal vertices create no fill when they are elirdinated. In

terms of the matrix A, terminal vertices are associated with rows which have

If i#J then vertex i is adjacent'to vertex j provided a ij 0.

**
Joining vertex 2 and vertex 6.
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exactly two non-zero elements. If the graph is a tree (i.e., has no cycles)

then one can always choose i terminal node at each pivot step [G-9]. A TDL
.'(

matrix is an optimally ordered tree, and Carte (G-21] has exploited this idea

in an ordering schlero for block iteratton.

The class of graphs G' have been characterized by Rose as being tri-

angulated. The minimum f£ll problerm, then, is that of determining a triangu-

lation of a given graph G which introduces the least number of new edges.

An example of a triangulated graph with 5 vertices and 7 edges is shown below.

Z e c

If a graph G is triangulated then there exist pivot sequences such that no

fill occurs in the elimination process.

Ordering to achieve ninimum bandwidth or compact BLD is motivated by a

desire to create systematic sparseness structure and/or reasonable sized moving

Template of Active Storage (TAS).. Which of the many approaches to ordering is

more fruitful depends upon the problem class and the nature of the computing

system on which the problem is to be run. Clearly, if mormory access is not a

*
Relative to a pivot sequence.I **

Every cycle with vore than three edcges has a chard.
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limiting factor and a large number of cases are to be run where the sparseness

structure is fixed, then Rose's triangulated graph approach is a desirable

strategy.

T
Now, assume A A but diagonal pivoting in any order is allowed. This

S S

means, in particular, that a if 0 for l<i<n. Associated with the given sparse-

ness structure, in this case, is a directed graph G where, for itj, there is

a directed edge from vertex j to vertex i if a i0 0. This assignment of

direction for the edge associated with a is best motivated by considering the
ij

method of substit'ition, as in Signal Flow Graphs (SFC's) [124-126]. In a SFG

each equation is explicitly solved for the diagonal unknown and solution proceeds

by substitution of the right hand side expression into the other equations.

A 6x6 nonsymmetric BSM with its associated directed graph is shown below.

1 0 1 0 1 0 G

1 1 0 0 0 0

o o o o1

A 0 0 0 0

1 0 0 1 0 0

0 0 1 0

0 0 0 1 0 1l

This matrix is reducible and one fill is the optimal situation. A pivot

sequence which achieves this is 3,1,2,5,4,6. The reordered matrix is shown

103
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below:

1 0 0 0 0 0

1 0 1 0 0

0 1 1 0 0

C
e0 0 1 1 0 0

0 1 0 0 1 0

o 0 0 0 1 1

There are a number of matrix reducibility algorithas (25,113; G-6,-lj,-II,

-20,-29j which determine if a given matrix is reducible, and, if it is, to

specify the permutation P such that B - PTAP = (Bij) is Block Lower

Triangular (BLT) with each Bii irreducible. In terms of the directed graph,

this means finding the strong components of the directed graph [C-61.

There are a number of other uses of the directed graph, such as finding

all subgraphs with some desirable feature, determining clustering [71], or finding

almost BILT orderings L5 2 ; G-20].

So far as this author knows, there is no cheracterization of the class

of G' graphs which is independent of a preassigned diagonal pivot sequence.

Rose has indicated in discussions with the author and his colleagues that the

directed graph case is much more difficult to systematize than thL corresponding

undirected case. Some general considerations of operations on directed graphs

iF contained in (25].
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The r.aost general case is a sparse matrix in which the diagonal plays no

particular or special role anCd where the matrix can even be of order mxn with

minn. Then there is associated with A a bWpartite graph with l row vertices

and n column vertices. There is a edge connecting row vertex i with column

vertex J provided a 0 [G-29]. .This graph has no restriction on ordering of

rows and columns, and can be used to sttdy the fill in the case of arbitrary

pivot order.

Graph theory has important conceptual advantages, but it has a number of
A

shortcomings relative to automatic digital computation. Only humans "see" a

graph as a whole and as parts, and can identify patterns when the structure

of the graph is below some threshold of complexity. Spezulation as to what

further algorithmic breakthroughs can be attained fron graph theory insights

is beyond the scope of this paper.

That is, there has not been an assignment of unkr- rns to equations, where
equation i is associated with unknown i and 1. l 0.
**

At least for the "unintelligent" information processing systems which are
available at present.
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9. PARTITIONING

There are a variety of reasons why matrices are partitioned. One of

the early reasons had to do with segr.enting problems so that the subproblems

could be successively solved within the limitations of the existing memories.

This had the advantage of keeping the analysis in the form of matrix equations

and was an aid to the problem poser. With the advent of modern automatic

memory hierarchies and excellent vector-oriented sparse matrix algorithms,

other methods of segmenting are available in an automatic form whtch do not

require clever insight on the part of the problem poser.

The Successive Over Relaxation (SOR) method was shown to be valid for

certain classes of sparse block matrices (1]. Block iterative methods have

been extensively developed [e.g., 18,26,101]. uarre [G-21) discusses computational

techniques for partitioning an undirected graph associated with SYP matrices

into a small number of trees. The diagonal blocks will be TDL matrices, and

a Block SOR iteration is applied to the partitioned system of equations.

In some cases there is a natural partitioning imposed by the physical nature

of the problem. Here the partitioning may ba completely regular, and the

elements of A are, say, 6x6 matrices. If the matrix is SYP or DID, then the

algorithms given earlier can be generalized to include block diaponal pivoting.

In fact, one could write highly efficient 6x6 matrix algebra subroutines.

That is, the elements of the matrix are, themselves, matrines.
**

It defeats the purpose of this approach if one has to deal with ncntrivial
sparseness for the 6x6's themselves.
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Partitioning also plays a role in the analysis of the fill associated

with several stages of Ga,,s.ian elimination. Lot A be the following Wx

partitioned mtrix where All is a kxk nonsingular matrix [46, p.130]

k n-k'

A FAl k 121 k

AA 21 A22 -

Then, Ax-b can be written in the form

Allx1  + A12 - bl,

A2 1 x + 2 2 x2 "b2

Solving for x in the first equation yields x A bI - Al 1 A1 2 x2 . This

result is substituted into Ihe second equation, and one obtains the reduced

equation A2 x2  b• where

A' A 2  A -A 9. 1)
22 22 A2 1 A1 1 A1 2

and

b' b -A21AI b (9.2)

Let S and S2 be two kxk nonsingular matrices and let

Bu1.0 4 ] [A21 122- : 1
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Then B111  S1 A1 1 S2 , B1 2  SIA1 2 , B2l - A2 1 S2 1 and B2 2 = A2 2 . Moreover,

B B B-1BB'2 - -B B1B22 22 2111 12 -1

A 22 -A21 S2(S 1 A1 1 S2 ) S1 A1 2

A22 -21Al11A12 "A22•

The invariance of the Block Gaussian Reduction (BGR) formula under linear

Stransformations of the first k rows and columns of A has a number of

important consequences. For one thing, it shows that the resulting reduced

matrix A12 does not depend on the details of how FIN (All)is obtained. Thus,

for exabple, one can apply Gaussian elimination to A, but restrict the choice

of the first k pivots to the first k rows and columns. This also shows

that there is a kind of local "continuity" of orderings of rows and columns

which lead to a sparse C (i.e., the composite L\U matrix). If at the mth

rc.duction stage, a(M-l) is not suitable as a pivot, then it is necessary tormm

disturb the natural sequence of pivot positions. Assume that this disturbance

can be limited to a few reduction stages, say m, m+l ..... ,k, and that the

pivots a•jj, m<'<k, satiefy m<i,j<k. The only portion of the matrix C, which
wi

is affected by the PFS strategy for m<p<k, is shown as the shaded region in the

figure below.

not affe~ted- I
fak pivot choices for

SI arfected

"To witAhin rucudofi erro.r, of coui:r.
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There are other reasons why the 2x2 block matrix approach is useful. For

one thing, the successive (lower right hand corner) reduced matrices tend to

be progressively more dense. Jennings [49] has an interesting discussion of

the overhead associated with nonband sparse versus full algorithms. If this

overhead must be paid for each solution vector, then there is a threshold of

density where it no longer pays to use a sparse Tnatrix method. Thus for each

sparse matrix A there is a k<n such that the (n-k)x(n-k) matrix A'2 should

be considered full. This applies also to a priori ordering to preserve

sparseness algorithms.

The matrices Al ,A1 2 ýA2 1 may have special properties which make it desirable

to have the first k pivots confined to A1 1 . If only the elements of A2 2 , in

the lower right hand corner of A, vary from case to case then the matrix

1A2A 1 A1 2 is constant, and it can be precomputed and saved. If A1T - A11 and

T tT -1 A 22 T T- T-A +- 2 then (A22) (A2 2 -AA21A ) A A22 AA1 1 A1 2 - A22 provided
T

A22 A22 When real and complex matrix elements are both involved in the

matrix A, then it is deeirable, if possible, t.o limit the complex elements to

the matrix A2 2 . Of course, here A is assumed to be irreducible.

Suppose A - B -sI where, either B is real and s is a complex scalar

or B is a constant matrix and s variee from case to case. Then every row

and every column of A contains an s-dependent element. Half of the factor-

ization can be made independent of s by ordering either the rows or the

columns (but not both) of A backward (i.e., n,n-l,...,l). This places the

s-dependence on tbe antidiagonal. This fact is more a curiosity than the basis

of a practical method, since stable pivoting is a necessary aspect of any

practical method.

Cbc"~ thi i-G -WZ&^UG5 -Witg '96a W-rUr'-9b rg GPTORD [G-46).
------------------------------ .. . ~.. . .. ~*~L progranOTODjG4]

By stable pivoting is meant the ability to achieve desired accuracy in tile solu-
tion with a reasonable floating point precision together with a small number of
ITerat've lefine.c'nt (ITF) steps (64,66).
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10. ERROR ANALYSIS

A sketch of general error analysis relative to computational linear

algebra is presented below as a prelude to some aspects of error analysis

which are peculiar to sparse matrix problems. The case of direct methods for

disorderly sparse matrices which are neither diagonally dominant nor positive

definite symmetric is of especial importance. It is beyond the scope of this

survey to present any quantitative results, and the reader should consult the

references presented in survey papers (30,50,67,110,111], the books (31,45,46,

76,105,109; E-Rl], and the matrix bibliography by Householder [E-R2]. Two

conferences on errors in digital computation were sponsored by the Mathematics

Research Center, University of Wisconsin, Madison, Wisconsin in October 1964

and April 1965 (75].

The extensive and careful evolution of valid .- lgorithms and computer

programs in the field of computational linear algebra should serve as a guide

for similar developments in the nonlinear areas [74,. 120; E-R3], The Special

Interest Group in NUmerical Matheratics (SIGWM1) of the Association for

Computing Machinery (ACM) has fostered interest in validation and testing of

algorithms and periodically reports results in its newsletter, which is edited

by Professor Cleve Moler, University of Michigan.

The modern evolution of matrix error analysis begins with the appearance

in the late 1940's of the classic papers of von Neumann and Goldstine [69]

and Turing (99]. At first, error analysis was limited to a study of fixed

point arithmetic algorithrs. Fixed point arithmetic has a distinct advantage

The Handbook Series Linear Algebra in Numerische Mathematik are a notable series
of this type.

All numbers and operations on nuz-bers are scaled such that they lie in the
range -l'x<l.
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over normalized floating point arithmetic in regard to signed addition and

subtraction. Severe numerical cancellation shows up in the form of leading

zeros. However, significance can be lost in fixed point multiplication of two

small numbers unless the product is scaled in an appropriate manner.

There has been a strong migration to algorithms based on floating point

arithmetic. These relieve the uscr, to some extent, of the task of analyzing

the size of all intermediate calculations. With the advent of automatic floating

point hardware in the mid-fifties, one no longer paid a factor of up to ten in time

over fixed point arithmetic.

ln the late 1950's, Wilkinson [107-111; E-R1] laid the foundations for

"backward" floating point error analysis. Wilkinmon [109, p.33] credits the

origin of backward error analysis to the papern [69,99] and more explicitly

to Givens [37]. In backward error analysis one establishes that, in the

computational procedure for solving Ax=b for x given the matrix A and the

vector b , one is actually calculating the exact solution to a slightly

perturbed problem. That is, if x iL the calculated solution, then x satisfies

(A+ 6A)x b + 6b
C

where bounds are specified on the norms [46, p.37] of 6A and 6b.

Volume 7, number 4 (December 1970) of the SIAM Journal on Numerical Analysis

is a special issue honoring Professor Alston S. Householder on his sixty-fifth

birthday. In the preface to this issue, Varga states that Householder's early

systematic use of norms in numerical analysis profoundly affected later

Certainly not of the problem of severe numerical cancellation.

See E-R2 for a more complete set of references.
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developments in the field, and his periodic Gatlinburg (Tenn.) Conferences

provided enormous stimulation, It was a lecture by Householder in the spring

of 1953 at Georgia Institute of Technology that convinced the author of the

present survey paper that numerical analysis is an important and challenging

field of specialization.

In the case where A is a matrix of a special form, e.g., symmetric or

sparse, then the perturbation 6A should preserve this form. In fact, in

the field of ill-posed problems [55], deliberate perturbations are sometimes

imposed so that the solution will be unique and satisfy auxiliary conditions.

With the perturbation approach to error analysis, this analysis is

separated into two aspects: EAB (Error Analysis, Backward) and EAS (Error

Analysis, Sensitivity). The latter concerns how much the "exact" solution is

altered by perturbations in the input numbers. Babuska has introduced the concept

of "maximally stable" algorithms [2,3] where one tries to minimize the

uncertainty in the answer which is due to the algorithm and to the finite

precision of the arithm-tic. Of course, the uncertainty in the answer which is

due to the physical uncertainty in the input data is another matter, and cannot

be resolved by the algorithm. This point is made by Lanczos [53, p.149].

The mathematical cornerstone of sensitivity estimates is the condition

number of a matrix [31, p.20; 105, p.88; 110],

cond(A) > IIIIAI 1.

A better terminology would be "incompletely posed" problems. These arise in
certain modeling questions where one knows ansi-ers and seeks the model.

Vithin the context of a reasonable degree of :loating point precision and
computational complexity.
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If one uses the Euclidean norn,

l^ll' ýJ [ai {2,

then cond(A) - P//ln where 0lIn are the largest and smallest singular values

of A, respectively [4; 31, p.5; 38].

The condition number of a matrix is effected by scaling, and Bauer [5,6]

has pointed out that a major aspect of scaling has to do with the effectiveness

of PFS strategies. Unfortunately optimal scaling is rarely achievable in

practical problem solving [l1j, and may, in some cases, conflict with physically
,

meaningful scaling. A recent series of papers by van der Sluis [88-90]

represent a major contribution to this field.

When experienced numerical analysts are faced with an unacceptable degree

of sensitivity to input perturbations in a practical problem solving context,

the standard practice is to check with the problem modeler to see if the

ill-conditioning is due to poor problem formulation. In many cases this is

the cause, and a reformulation removes the difficulty.

-In some cases, the ill-conditioning is unavoidable and then the method

of ITerative Refinement (ITR) [64,66] is the main tool. Of course, sufficient

accuracy must be achieved in the factorization stage to enable ITR to converge.

Wilkinson recommends ITR in any case as a means of providing a degree of

assurance of the accuracy of the solution.

The INverse Iteration (INI) method [100; E-Rl, pp.319-333] requires PFS stra-

tegies and this normally means not preserving sy-.etry in the factorization [E-8,-25].

See Givens' remarks [112,p.166 (SMY-1 9 )].
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The mixing of scalar diagonal pivoting with 2x2 block diagonal pivoting can

be used to preserve symmetry and, at the same time, provides a stable pivoting

strategy for symmetric indefinite matriccs [13,14].

At times it is possible to take advantage of th-2 symbolic form of the

matrix elements to avoid numerical cancellation in the factorization stage.

The Nodal Admittance Matrix (NAMI) [11], which arises in the analysis of electrical

networks, has this character. NA.M's are a special case of a more general class

of H-matrices [101, p. 8 5] which satisfy the following conditions: (1) A is a

real nxn matrix, (2) aij < 0 for i'j, (3) A is nonsingular, and (4) A > 0

(i.e., all elements are non-negative). In a number of applications including

NAM's and Cost Model Matrices (001's)(70] the diagonal elements are expressed

as a sum which includes the sum of the absolute values of the off-diagonal

elements in the same column (or row),

Ja I+IaIj ,,m
mm iy~m im n+jm

where an+,m 0. This summation property guarantees that the matrix A isn~l~m-

diagonally dominant. If, in addition, A is irreducible and an+l,m < 0 for

at least one m such that 1<m<n, then A is nonsingular and A-0> 0.

It is interesting to note that, while diagonal pivoting is considered

stable for the case of diagonally dominant matrices, the calculation of the

pivot elements I in this case, by the usual formula

m-1
mm a. mj Ujm (10.1)

j=l

That is, cannot be reordered to be DloJk Lower Triangular (!;LT). The question
of reducibility will be discussed later in this section.
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involves exact symbolic cancellation as shown by the following 2x2 example.

SA c a,b > 0, Icl << a

-a _ __

If A - tb I b (-a) b b - alh
11 1 12  b -(- a+-)(-If A-=LU thcn £i at au2 a a+c

b(a+c) -ab b.. The inherent accuracy in the small number c can be
a+c a+C"

lost in form!ng the sum a+c so that £22 can have a high relative error. This

type of cancellation was brought to the author's attention by Calahan ['.,pp.30-3 2 ;171.

Many engineers have developed circuit motivated techniques for avoiding cancella-

tion based, for example, on the use of the "star-mesh" transformation [81] or

of the indefinite admittance matrix [86,87]. A method based on a zero sum
,

augmented matrix was presented by the author at the Oxford Sparse I trix

Conference [SMO-17]. This method which is presented below is merely a slight

variation of a technique reported earlier by Bingham [9]. Let A' - TA] where

T -t
e - (ll,...,l). A' has zero column sums and this property remains invariant

under Gaussian reduction. If A - LU then

A' [TA] [Le U.

The zero column sum property of the augmented L matrix provides the following

cwacellation free formula for I as an alternate to (10.1),

n+lI MM 1 1 km 1. (10.2)

k-m+l

This is the indefinite ad:--ittce -.atri:x in nodal analysis.

Row and/or colu,:n sums are usce1d in dck calculcticns as error and/or blune,.r
checks.
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In the formula for t M'use is made of the properties .j, uj, U .- 0 for iJi.

If the alternate formula is used for calculating t. then there is no numerical

cancellation in forming all of 1. and U for this class of M-matrices. This

also applies to the SUB stage if b>O. The mth conponent of -e TA is an+lm,

which is an input number, and thb diagonal elements of L are formed rather

than the diagonal elements of A.

The following theorem for the class of matrices which are strictly diagonally

dominant M-matrices (that is, a+lm < 0 for l<_<n) forms the motivation for a

SMatrix Reducibility Algorithm (XRA) [113].

Theorem. A-l > 0 if and only if L and UT (U tzanspose) each have their last

column as their unique singleton column (i.e., a column with exactly one nonzero

element).

For this class of matrices, A- > 0 if and only if A is irreducible. Thus

by forming SSI(C), where C is the composite L\U matrix, one has a test for

reducibility. Suppose A is reducible, then there exists a permuation matrix, P,

such that B - PTAP is BLT. The square diagonal blocks, Bkk, will be irreducible.

Moreover, B-1 is also BLT, and has B-1 > 0 as its diagonal blocks. The follow-

ing condition characterizes the indices ij such that a l and ajj belong in

the sarne irreducible diagonal block of B,

a1 I a1 OS A 1 - (aj). (10.3)
ij i ii

Reducibility of a matrix is a purely logical question which depends only

on whether elements are zero or not zero. The proposed !.RA, though motivated

by ideas relating to strictly diagonally dominant M-natrices, requires only
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the condition, a M 0 for l.m'n. In many applications, this condition is

already satisfied. If it is not, then one first applies to A an Assignment

Algorithm [G-27] which is a special part of the general field of network flows

127].

The various Symbolic Factorizations Programs (SFP's) which generate SSI(C)

from SSI(A) can be extended to include both row and column symbolic forward

and backward SUB. In this way, SSI can be obtained for row i and column i of

A-', and this information determines the set of indices which belong !n the

same irreducible diagonal block of B. The following properties are numerically

true for strictly diagonally dominant M-matrices and "logically true"* for

matrices A such that a € 0 for l<mcn.

•,al 0 =>ci 0 ,• ai 1 0
Ij ij ij(10.4)

M m

w:here Ly , b and Ux y (i.e., A - LU and Ax u b).

Since C is at least as full as A, the first 8x8 matrix on the following

page is irreducible by inspection since there is a nonzero in row m to the right

of the diagonal and a nonzero in column m below the diagonal for l<m<7. The

second 8x8 is also irreducible by inspection of SSI(C).

*That is, in the Boolean sense and ignoring creation of zero by exact numerl,'.a
cancellation for a particular matrix A.

The symbol b is used to represent aij= 0, cij 0.
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IIPREDUCIBI, E x RICES

1 0 I 1 0 0 0 0

0 1 0. 1 0 010 0

---------------------------------- 4--
1 1 01010 0

:•0 0 0 . 1 0 0 1

0 0 0 1 0

1 0 0 1 1 1 0 1 0

"0 0 0 0 0 1 1 0

0 o 0 0 1 1 1 1

1 00 0 -1 o o o o o o I

I 10 0 0 0 0 o
1 1 0 0 0 0 0 0I

0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0
0 0 1 1 0 00 0A_, C2

0 0 01 1 o 01

0 1 0 0 1 lo 0 01- - - -

0 1 0 0 1 1 0 1 o o 0 0 1 1 0
00 0 0 0 00 1 0 I

00 0 0 0 0 1 10

00 00 01 1 1 0 0 0 0 01 1
0Ii~irj11I



4A1

Trivial reducibility can be removed from A as a preliminary operation.
For example, all rows and columns of A associated with singletons can be

a priori struck out of A and ordered directly into the BLT matrix B. Also,

the sparseness structure of certain elements of the various matrices and

vectors are either known a priori or are irrelevant to subsequent calculations.

For example, (10.4) provides a priori information, and, if an irreducible block

has been found, the sparseness structure information associated with the indices

in the block is irrelevant to the determination of subsequent irreducible blocks.

Thus index skip lists can be generated during the algorithm and utilized to

bypass unnecessary operations.

The 8x8 reducible matrix, A, shown on the next page, illustrates a number

of aspects of the proposed MPA. A permutation, 0, of (1,2,3,4,5,6,7,8) is deter-

mined such that B is BLT and row (column) i of B is row (column) ai of A.

Search for singletons provides a, = 5, 8 = 4, and a7 = 1. These provide lxl

diagonal blocks in B, and now the indices 5,4,1 are irrelevant. The matrix C

is formed, and A is found to be still reducible because c8 7 = 0. The relevant
I I

part of row and column 2 of A-1 is determined, and a2 j . aj 2 0 0 if and only if

jc{2,6,8). The indices (3,7} form a 2x2 block which must follow {2,6,81. Thus

a 2 - 2, a3 = 6, 04 8, 0F5 3, a6  7; that is, a - (5;2,6,8;3,7;1;4).

The symbol § in C means valic: is irrelevant.
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R•EDUCIB1LE MATRIX

0 0 1 0

S0 01 0 0 0 1 0

1 0
I A 0 00 1 00 0

0 1 0 0 0- 1 0 0

S0 1 0 0 0 01 0

S0 0 0 1 1 0 i

§ 0 § 0 0 1 0 1 0 1 0 0 0 0

S0 1 5 0 1 0 0 1 i 0 0 0 0 0

§ § § § § § § §1 0 1 1 0 0 0 0

§ § § § § § § §1 0 0 0 1 1 0 0

S •} ~0 1 0 1 1 1 0 0S1 0 § § 1 0

IFI
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.MKrR!X REP' ,':;1LIT'Y ALGORITIH. (!OrA)

1. Given SSI(A) generate SSI(C) via a SFP.

2. Check column counts in L and row counts in U for reducibility
(theorem p. 10.7).

3. If A is reducible, find irreducible blocks of B via repeated use of
(10.3). The set S = (l,2,...,n) is partitioned into equivalence classes
R = (R 1 , P,,...,R ) of indices belonging r.o the same irreducible
diagonal biock of PB.

4. Define pxp Boolean matrix M (m ), where m I1 if and only if for
some iLR and some J, R , a 1 0. M is reorhered t;o achieve a lower
triangul~r form by sutc,)ssivJ symbolic Gaussian reduction, using at each
step as pivot the unique nonzero element in a singleton rcw.

5. The reordering permutation for M, together with the pa-tition R, deter-
mine a permutation matrix P such that B - PTAP is BL and the square
diagonal blocks Bkk are irreducible for 1<k~p.

T T
6. Instead of solving Ax=b, one solves Bz=g where z i P x and g = P b. Only

the diagonal blocks are factored, and z is determined via block forward SUB.

I ~ oIgiti-• Ifi. I -• c o

ASo I i _reduible

It A -Jiro Uc ?n4

S~ca O LVEO 11ri0gla redc ible

S6 I A

xF
3 1

iirouc In 4d•.bl

Soacial$OLTriangularJ
11Ptefr AgX3Z•CIL•ALOtT0



The following 3x3 example shows why it can be dangerous, from an accuracy

point o: view, to pivot outside the irred cible blocks. Let f 2a+l where

-f r0 0 a-

01 A O 0 a

-u.a -1A -1' 1 1
10 0 La- 1  h-1

Note that g - a(a/f), and t g -g g!(l+g)] a [/(a+l)] hNoeta 22 33••"h

Maximum pivoting was used in each step, but Z is of the form • - ' as
33

a - + -. Let c(A) = condition numbe.r of A -ijAII.IIA'1-1 I, th.,n cfA)>2a, since

IIAII>_ spectral radius of A ' 2a, and iIA 1Ii_ 1. However, if the matrix A

is scaled by dividing the first row and first column by a, then the resulting

condition number is less than 9 for all a > 1. The (!,1) eleient is now

-(2a+l)/a2, which is clearly . poor pivot choice for a>>l.

Consider now a RLT matrix, B = (Bij ), where the diagonal blocks, Bii, are

irreducible and nonsingular. One can independently scale the diagonal blocks Bii

to achieve an optimum condition numbar for that block. In addition, let

D - block diagonal matrix = diag. (cl, 2 12I..., nlI) where O<c<l and I is the

identity matrix having the same order as B If T - DBD- 1 . (Tij) then
- 1 I, I -i , ij B j and

T-1 DD- = (T I) and Tii =Bii T1i - Tii; Wij an
S i-i I

Ti -i B for lfj<i<n. Thus optimal scaling demands that pivoting be

restricted to the irreducible diagonal Utncka.

It is important to realize that the number zero in matrix calculations is

qualitatively different from a nur~ber which ray, in a given context, be
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negligibly small, c, say. The nvmr.ber zero is invariant under scaling of rows

axid columns, whereas c certainly is not, e.g., • • c - 1.

Numerical analysts create pathological examples as a caution to the unwary.

A well-known exar:ple of a qualitative difference between c and 0 is exhibited

in the eigenvalue-eigenvector inalysis of the following nxn natrix.

A -

if a w 0 then A is in Jordan canonical form [45, pp.34-37], X - 0 i1' the only

eigenvalue, and x -e (e first column of te identity matrix) is the normalized

eigenvector (otherwise there are only principal vectors [45, p.32]). On the

other hand, if, for example, a - 1 0 n , then there are n distinct eigenvalues

i-1 . ni pritethi W i0 ,l_<!n, where w - e - primitive n root of unity, and

o - 2n/n. All these eigenvalues have modulus 10-. If n-20, for example, then

a = 10-20

In sparse matrix problems, a11 - 0 typically means "x does not occur in

equation i" rather than "the effect of x in equation I is negligibly small."

Casting out insignificant terrs in probleim: modeling ha; been the domain of the

*
Kahan [50] and Wilkinson [107, 108] are experts in this area.
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applied mathematician. However, in the realm of nonlinear evolutionary problem

modeling, this "casting out" is being replaced* by "putting in and see what

happens."

There has noc, in general, been any particular emphasis on error analysis in
•, **

the various specialized t.karse matrix applications areas. Rosanoff and Shaw [85]

have analyzed the question of conditioning in Structural Mechanics, and Fox

end Stanton (33] stress the importance of scaling to minimize the eigenvalue

spread in applying a CGM in cases where A is SYP. Finally, Wolfe (75, Vol. 2,

pp.271-281] discusses the questlon of error analysis in the linear programming

field. Linear progranmmng represents an area requiring the most general approach

to sparse matrix calculations.

PFS has been a critical aspect of algorithms for matrices which are nelti-r

SYP nor DID. The computational price one pays for this in dealing with full

or band matrices is reasonable, but where the sparseness structure is arbitrary

this is not nec,.ssarily the case. Care must also be exercised in choosing

pivots which pres-rve sparseness. Clearly, zeros cannot and near-zeros should

not be used as pivots, ' least aome threshold criterion is necessary.

As far as the author is aware, there does not yet exist in the literature

a systematic analysis of the accuracy achievable in the factorization stage

using some form of threshold pivoting. Of course, it is always desirable to

use extended precision inner product accumulation, and this may be crucial in

the ctse of threshold pivoting.

-•i *

This marks a move towards large scale scientific calculations.
• -- •**

Structural Mechanics Conference, Flight Dynamics Lab , Wright-Patterson
* Air Force Base, Ohio (October 196t).

That is, 11 "> c. where a is some absolute or relative threshold.
*.***-
In the context of a priori specified precision in the floating point arithretic.
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11. COMPUTATIONAL COMPLEXITY tND EFFICIENCY

The wt.ole question of computational complexity and of efficiency of

numerical methods is just beginning to receive the attention it deserves in the

field of practical problcm solving. The maximum size of matrix problems attempted

has always been at the limit of the capacity of information processing system.s.

In order to enhance the evolution towards solving larger problems, there needs

to be developed a detailed understanding of how the computational feasibility

and efficiency depends on the problem formulation, the algorithm, and the

architecture of the computer hardware and system software.

Efficiency is measured in terms of Cost/Performance (C/P). Both cost and

performance are hard qualities to quantize. In its broadest sense, efficiency

is the measurement of the human and computer factors involved from the time

a problem is first conceived until results are available in a form suitable
,*

for the user's ultimate need. Here the chargeable CPU time may be completely

negligible, especially if no production code is available for the calculation.

In the narrowest sense, one is measuring the throughput in the CPU for

important inner loop calculations. Even this is poorly specified if one is

operating in a time-sharing or multiprocessing mode.

Consider the question of efficiency in solving Ax-b for x given the

vector b and the sparse nxn matrix A. There are undoubtedly critical cross-

over points and elbows on efficiency versus n plots, but meaningful plots of

this type are hard to obtain for nontrivial situations, and these plots nave to

br. viewed in the larger C/P environment of the total problem being considered.

Moreover, the efficiency should be averaged over some spectrum of computer runs

Central Processing Unit, that is, the arithmetic and prtp3r,'a. rcntrcl registers
as distinct from momory.
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in a realistic operating environment.

Wolfe [112, pp.107-112; SMY-12] has given an excellent indication of the

evolution of computing power in the field of linear prograiing. The first

graph shows the size of the largest problem users reported solving at various

periods in time. It is Interesting to note that, at the time of the symposium,

10,000 equations seemed to be the production frontier in both linear programming

bind in structural mechanics. The character of the sparse matrix problems and

the algorithms are vastly different in the two fields. The second graph shows

an equally important type of evolution; namely, the decrease in running time

for a rodel problem as both the computer system and the algorithm evolved.

"We need more graphs of both types for a spectrum of applications, and also

detailed timing charts for certain large-scale calculations which are at the

frontier of capability of current systems.

A measure of computational complexity in linear algebra has typically been

the number of multiplications involved. This has been reasonable with regard

to floating point operations since multiply-add is the basic operation except

for the calculation of n reciprocals p a 1A i/i for l<i<n. Recent work

[12,32,44,51,94,114,115] has addressed the question of minimizing the number

of multiplications in numerical calculations. These, of course, do not

necessarily cover the question of computational complexity in disorderly

sparse matrix problems. For sparse matrix calculations, there is, in addition

to the complexity of the floating point processing, the logical manipulation

of sparseness structure information as well as the questions concerning access

to information in a memory hierarchy and under a variety of operating conditions.

Septem~ber 1968.
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The whole question of computational complexity is becoming increasingly fuzzy

because of the advent of sophisticated operating systems, virtual memories [F-44]*

and parallel !123], pipeline IF-47] and array processors EF-25]. Multiprocessing,

especially in a time-sharing environment [F-35] also increases the difficulty of

accessing computational complexity and efficiency. The relationships between

sparse matrix calculations and computer systems will be discussed further in

sections 12 and 13.

That is, automatic data management in a memory hierarchy environment.
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12. MEMORY HIERARCHIES AND DATA IANAGE1LNT

Access to information, both data and code, is an important aspect of

computational complexity and efficiency. Soni problems are CPU bound, but

others are memory bound. The latter seems to be a critical bottleneck in

certain large scale direct sparse matrix calculations, and has been a strong

argument favoring iterative methods. However, as problems become more

irregular, many iterative methods become ineffective because of a degraded rate

of convergence [104; 112,pp.139-148; SHY-16]. There needs to be a continual

assessment of the relative tradeoffs between direct and iterative techniques

as the problem classes, the algorithms, and the computing systems evolve.

Highly sophisticated memory hierarchy systems are appearing, and the aim

of these systems is to make the functioning of the hierarchy tr parent

(i.e., be of no concern) to the user by means of automatic memory management

[F-44,-45]. Some reasonable rules relative to ordering must be followed

[68; F-39] if efficiency is to be achieved in matrix computations. Basically,

the main ideas are: (1) When blocks of information are moved up in the hierarchy

they should have a utilization which is directly related to the size of the

block; (2) Where information resides in the hierarchy should be related to

the effect of its access on the overall efficiency of the processing.

Efficient I/0 and memory management are two of the most critical problems

in the design of large scale production codes. The resolution of these

problems often dictates the level of generality which can be tolerated in the

code without seriously degrading the computational efficiency in the typical
*

production runs.

*
Having too many special purpose codes, on the oiher hand, tends to create a

high level of human inefficiency.
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Sparse matrix problems have a number of special characteristics. For one

thing, there are long chains of streaming and merging in these calculations

which are well suited to multiple memory pipelining. Some information is used

repeatedly such as the rows of the U matrix in the FIN stage of Gaussian

elimination, whereas, in each pass through the SUB stage, the rows of L and

of U are used exactly once.

Let A be a band matrix such that ai 0 0 for li-il < k where k<<n, bi

otherwise a j- 0. Also assume that pivoting can proceed down the diagonal

in the natural order (PDN). This class of matrices are ideal from a sparse

matrix point of view. In the factorization stage there is a Template of Active

Storage (TMS) required to form the m h column of L and the mth row of U.

This TAS is the shaded area in the diagram below.

(j-kj)

.o(m.m-k) -d .,
;MM :M,J) (M=.=k)

- (Lu, )Q(mi-k

Of course, all indices are also greater than or equal to one and less than

2
equal to n. There are at most k + 3k + 1 locations involved in this TAS.

This is a moving template which progresses as m increases from one to n.

There are schemes which augment the diagonals with zeros at the beginning
and/or the end to avoid special cases for the terminal indices.
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This local active store also applies to the x and y vectors in

the SUB stage, and again is a desirable feature in memory situations

which are not random access. It is partly for these reasons that a number

of authors have developed bandwidth minimization algorithms [G-15,-35,-38,-42].

For the general sparse matrix and the RGE algorithm, the active storage

requirements can be very chaotic, both with and without PVS. In the first place,

the storage needed for the nonzero elements in A is, in general, not adequate

for the storage of the nonzero elements of C because oi the fill occurring

in C. If only diagonal pivoting in the natural order is involved, then an

upper bound for the number of nonzeros in C is obtained from the BLD

approach to fill. If PFS is involved, the estimations of active and total

Sstorage requirements for C are much more difficult to obtain. Of course,

one can deal with upper and/or lower semi-bandwidths in this estimation,

but this approach may be too gross.

One approach to Gaussian reduction is to process all remaining rows with

the pivot row and thereby obtain a reduced matrix which has an order of one

less than the matrix being reduced. In fact, this approach was used in the

early Gauss-Jordan complete elimination algorithms [F-l]. Here, the active
2

storage remains at somewhat more than n , since the entire matrix is updated

at each stage. After n stages, one has either A71 or a permutation of A71

in place of A. One has the widest choice of pivot strategies if this

approach to Gaussian reductions is used.

A quite different approach can be taken in processing the rows of A in

the RGE algorithm. The rows of A are first stored compactly in serial backup

See also Tewarson's survey article on sparse matrix methods [96].

The author acknowledges informative discussions with colleagues, A. Blaser and
H. Pretsch, at IBM Germany who are investigating memory estimation techniques
for general sparse matrices where PF5 is involved.
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th th
store. At the m reduction stage, one processes the m row of A against

th
rows 1,2,...,m-1 of U, amd obtains then the m row of U. Some subset of

the first m rows of U are needed in compact form in active storage for

processing row m+nl of A.

If PFS is not involved and one is going to solve a number of cases where

SSI(A) is fixed, then SSI(C) can be obtained a priori, and the moving TAS can

be constructed. Moreover, reordering schemes can be applied which are aimed

at making the maximum size of the template reasonable. This can be especially

important in large-scale calculations which are memory bound.

There are, of course, a number of other tradeoffs in a priori ordering

strategies such as achieving: (1) minimum operation count in forming C;

(2) sparsest C; and (3) systematic sparseness structures (e.g., band, triangular,

block triangular, or structures which are "near" these in some sense). The

effectiveness of these strategies is sensitive to the problem class, the

computing system, the dynamic operating conditions when a problem is being

run, and, of course, the excellence of the programming.

Repeated restarts of slow serial backup stores, such as magnetic tapes,

can be a limiting factor for the size sparse matrix problems which are feasibla

in a production computation environment. Large core store, high speed discs

and drums help extend the size of feasible problems. On the other hand, operating

systems, problem oriented supervisors, and dynamic storage programs may eat up

in overhead a large portion of the added memory power. If substantial overlays

of code and/or data are required in the inner loops of a large-scale calculation,

the effective rate of computation can be considerably degraded.

See Part G in the bibliography and [96] for detailed references.
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13. COMPUTER ARCHITECTURE AND PROGRAIING

There is no question that many classes of sparse matrix calculations could

be enhanced by special purpose hardware such as parallei, pipeline, and array

processors. Also important algorithms could be microcoded to improve the

throughput. However, the C/P figures for these special aids to a small class

of users may cause them to be unfeasible, except for cr!tical real time appli-

cations where cost is not a primary criterion.

Parallelism has many forms. For example, one can either h&ve a single

instruction stream with vector processing in parallel, or several instruction

streams with a number of arithmetic registers. In pipeline processing, one

segments the operation "multiply-add," say, into a number of successive but

separate steps. As soon as one step is completed in the sequer ..e, new operands

can be processed in a pipeline mode. If the pipeline is long, data-dependent

branches which drastically interrupt the flow arc to be avoided whenever possible.

Memory pipelining has already been mentioned in the previous section.

It is very difficult to predict the evolution of information processing

systems, but some general remarks seem appropriate. First of all. multiprocessing

has become a standard approach in larga-scale systems. Moreover, there will

be a continuing evolution towards more powerful general purpose computers which

satisfy the needs of information and data processing, as well as the small

market for large scale scientific calculations. As indicated in the last

section, one of the. important developments will be automatic memory management

which will be coupled with simple user rules for structuring and segmenting code

and data.

Wilkes, M, V., "The growth of interest in microprogramming: a literature survey,

Comput. Surveys 1 (1969) 139-145.
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Terminal oriented computation with an interactive graphic facility,

will have steadily improved C/P characteristics. However, in order to be

feasible at the individual user level, there must be a drastic reduction

in the current C/P figure for interactive graphics. The terminals may

have stand-alone memory and computer capability, but they will also largely

be a part of a communication net of terminals and large-scale central computer

systems.

There are two underlying criteria involved in the evolution of "omputer

systems; namely, (1) compatibility and (2) improved C/P. The first is

in.noetant since then costly production codes are not made obsolete. Without (2)

no new general purpose system has any reason for being. Moreover, the enhanced

C/P should be achieved in the context of high level languages such as FORTRAN,

APL and PL/l, and should not require extensive user tuning of existing programs.

The preceding remarks could be interpreted as referring mainly to hardware

evolution, batt what is hardware and what is software can be a very vague disrinc-

tion. Software engineering is a rapidly developing discipline in the systems

programming area, and will continue to be the pioneer for hardware innovations

when C/P characteristics dictate a shift from sophisticated software to efficient

hardware,

In sparse matrix problems, there are a small number of important underlying

mne"hematical ideas which must be understood and exploiced, but it is in the

applications programming, itself, that the efficiency is achieved. The

proaramr.er Phould be aware of the computer nrchitecture considerations in

planning his programs, but extensive "fine tuning" may make the program subject

As well as hard copy option at the grapaics terminal.

Reliability and serviceability are a part of C/P.
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to continual rodificatlon because of changes in hardware end/or s;'stems software.

Clever programming is a fascinating game, but it must be played by fea..onable

rules if the resulting program is to be useful to a large class of problem

solvers. Basically, progr.-ming has two aspects: (1) flow charting, and (2)

coding. Ab•,pct (2) should be an imple..entation of i~rio; development of aspect (1)

and not vice versa. "ine tuning may be a necessity, in some cases, of important

inn.:r loops, but these s uld be cleairly identified in the program for easy

updating.

In sun.•nary then, while it would be desirable to have computing s)stems

which are tailored to the specific needs of users, C/P characteristics dictate

that users adapt to the structure of the evolving systems. Sophisticated I
scientific users should take the effort to clearly identify their needs and,

where necessary, show that these needs are not being effectively satisfied by

current syste••s. In this way, C/P studies can be made relative Lo these needs so

that unnecessary bottlenecks can be removed from future systems. The users
I ~ might start their interaction with computer architects by readi-g the story -

of the planning of a large high performance computer [r-.7].

It is the contention of the author and his colleogues that, if a computing

system is effective in a C/P sense for sparse matrix calculations, then tLi.s

system will also be effective for a broad spectrum of other uses.
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14. NXNIMOXN CS DI CTIONARY Xb BIBL.IOGCRAP'iY

A. General V:v;-.arks

In writing Lhis survey, the author found that he was often referring to

certain concepts such as triangular factorization. It became convenient to

refer to th1LS'V concpC ts; bsy h1n.ans of inc±mo:nics. Thus, TRiangular Factorization

is assigned the mnvmonic TRF.

in part B of this section, a mncinonics dictionary is presentcd which serves

also as a subject guide for the references and an index for the survey itself.

The references are by no means complete, especially in the applications

area. Certain references a:re cited in each application. These either represent

a text which can serve as survey of the application or papers which concern a

particular a.sp-.ct of sparse matrix technology. The use of Band Like Domains in

structural rcvchanics problems is one example of this type.

As Hous.eholder has pointed out many times In his Mathematical Reviews

contriutions, there -s repeated discovery of known results in practical

numerical analysis. One reason fur this is the very recent acceptance of

algorithms as publishable in their own right, and the rather meager set of

cadequate surveys and annotated bibliographies for various practical aspects of

numerical analysis.

Cross discipline symposia are an important remedy for this lefect. These

symposia should be addressed to the understanding of the underlying mathematical

modeling techniques and the current state of feasible and/or efficient

computational methods,
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One purpose of this survey his been to provide an extensive bibliography

for cparse matrix technology. Parts E, F and G are organized chronologically

by subject m:atter as fo.lows! E. ELigenvalues and Eigenvectors, Sparse Matrices;

F. Computer Architecture, Parallelism, Ner.ory Hierarchy, and Data Management;

and G. Preserving Sparseness. Part C Is an author list, and part D is a set

of general reierc-necs, which are alphabetical by first author.

Two references E-1l2, -R3 tefer to the two volumes of Householder's extensive

bibliography of numerical linear algebra E-R2, Vol. 1 (First) Authors A--J,

V!o. 2 Authors K-Z), and one volume on references for numerical treatment of

nonlinear equations. Mhere known, the reference includes a citation concerning
where the article is reviewed in MR (Mathematical Reviews), CR (Computing

Reviews), lZ (feferativyl Zurnal. Matematika), and ZBL (Zentralblatt fur

Mathematik und ihre Grenzebiete). The abbreviations for the journals are

those listed in the index issues of MR. There is also an author index and a

,.AiC tKey Word in Context) index. Also, each reference has a four-diSit identi-

fication which starts at 0001 fo5 each volume. All told there are approximately

3800 references in the three ;olumes.

I: most cases, If a refere:nce in the present survey occurs in Householder's

bibliography, the Householder number iF given together with his CR and/or M

citation. For exa.ple, the Daniel [20] reference ends with M056$, CR9 13,478,

"MR36 2315. This means Ue,.ustholder jE-k2, Vol. 1]*i* 0563; beoreputing Reviews,

volume 9, review number 11,478; Mathemattoal Reviews, voluuma 36, review number

2315.

Aublished In M!oscow.
, Published ir Berlin.

C::* If E-R3 is Intended, this will be denoted by H(Q'uxxxx.
*::• Starting with volume 20 (1959), IR nu.t:.Aers the reviews starting from

on0. o:n, I year. P-ef',rc ti.at reviews ware rcerred to bu volume and page.
CR nunbLrs each rcview ccnsceutivey withoit starting at one each year.
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:;oth in the references In this survey and in Householder's bibliography,

the title of the article or book is translated into English when the article

is i•n another language. The language of the article is indicated in parentheses.

In most cases, CR and MR reviews indicate if there are summaries of the article

in other languwges.
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B. Mnemonics Diction;,rv

AOI Association for Computing Machinery; see also SIGNUM; p. 10. 1.

APL A Programming Language; [47]; pp. 4.3, 13.2.

BGR Block Gaussian Rcduction; see also RGE, SYI; [13, 14, 45, 46; F-41];
pp. 6.4, 9.1-9.4, 10.5.

BiF B11-1actorizatlon; see also ECH, EFI, ERM, SYP; (78(SMO-6)]; pp. 2.3,
3.2, 6.1.

BIM Block Iteration :k.Lhod; see also DID, PDE, SOR, SYP, TDL; [e.g., 1, 18,
26; G-211; pp. 8.3, 9.1.

BLD Band-Like Domain; see also Bý!, SSI, TDL; [48, 49, 58-60, 65, 78 (SMO-7),
84]; pp. 3.2, 7.2-7.3, 7.5, 8.3, 12.3, 14.1.

BLT Block Lower Triangular; see also MRA; [25, 113; C-6, -10,-11,-20,-29];
pp. 4.1, 5.6, 8.5, 10.5, 10.7-10.13.

BliN Band Matrix Method; see also BLD, TDL, '"TDM; (e.g., 36, 63, 82, 95, 97;
E-RI,-8,-25; G-15,-35,-38,-42]; pp. 7.1, 12.2-12.4.

ESM Boolean Sparseness Matrix; see also SFP, SST, TLP; [e.g., 40];
pp. 2.3, 7.2-7.3, 8.1-8.5.

C/P Cost Performance ratio; see part F of references; pp. 11.1, 13.1-13.3.

CAP Computer APplication; see also CCD, LP, NLE, PDE, PSA, SDE, SPP, STM;
[4, 10, 11, 16, 17, 21, 24, 27, 28, .32-35, 41, 42, 48, 49, 52-62, 65,
70-75, 78-87, 91-93, 98, 101-104, 112, 113]; pp. 3.1-3.3; also see
part.i cular applications.

CAR Computer ARchitecture, see also MEH, NOP, TAS; [e.g., 123; F-7,-25,-47];
pp. 4.2-4.4, 8.3-8.4, 9.1, 11.1-11.3, 12.1-12.4, 13.1-13.3.

CCD Couiputational Circuit DesIgn; see also CAP, HWM, NLE, PSA, SDE;
[9, 11, 16, 17, 41, 42, 52, 71, 72, 78 2SMO-17), 81, 83, 86, 87, 98,
112 (SMY-17), 113; G-1 through -5,-7,-23,-26,-28,-461; pp, 1.1, 2.1-2.4,
3.1-3.3, 10.5-10.7; see Cornell Conference reference p. 2.1.

CGM Conjugate Gradients Method, see alse SYP; [7, 19, 20, 24, 33-35, 43. 46,
57, 76, 78 (SMO-16), 92, 105]; pp 3.2, 6.3-6.4.

C201 Cost Model Matrices: see 41so CAP, DID, M-MAT, NA.,; [70]; p. 10.5.

CPU Central Processing Unit; see part F cf references; pp. 11.1, 12.1, 13.1.

DID Diagonl!ly Dominant; see also BGR, BIM, PDN, SYP; [9, 17, 26, 54, 70, 78,
81, 83, 91, 96, 101, 112, 113; E-R2]; pp. 4.2, 6.1, 9.1, 10.5-10.7.

EAB Error Analysis, Backward; see also E.N, EAS, PFS, SCA: [e.g., 109];
pp. 10.2-10.3.
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E,• Error %:,'alvsis; see also LAB, EAS, SCA, SUR; [2-6, 9, 13-17, 30, 31, 33,
37, 38, 45, 46, 50, 67, 69, 75, 76, 85, 88-90, 99, 105, 107-111, 113;

E-IU,-R2]; pp. 1.3, 2.2, 3.1, 4.1, 4.4, 6.4-6.5, 9.4, 10.1-10.15; see
especially [109].

EIS Error Analysis, Sensitivity; see also EAB, EAN, PFS, SCA; for references,
see EAN; pp. 10.3-10.4.

I' CM Il'hiontary Column Matrix; see also BIF, EFI, EIU1, FIN, MT-51, PFI; [4, 62,
73, 78, 96, 112, 121; C-31,-431; pp. 3.2, 3.3, 4.5-4.7, 5.3 5.6, 6.1.

EFY. Elimination Form of the Inverse; see alFo D!F, ECM, ERM, PFI, ROE, SILA,
TRF; [4, 62, 73, 78, 95, 112; G-43]; pp. 3.2, 3.3, 5.3-5.5, 6.1; see
In particular, SY-lO.

ERM Elementary Row Matrix; see also BIF, EFI, FIN, ýDLM, PFI, RGE; 14, 62,
71-73, 78, 83, 96, 98, 112, 116-119; G-43]; pp. 3.2, 3.3, 4.5, 5.2, 5.4,

}• 6.1.

EVV Eigen-Values and -Vectors; see also CGM, INI, PDE, SYI, TDL, TDM;
[e.g., E-R1]; pp. 3.1, 6.4--6.5, 7.4, 9.4, 10.13-10.14.

FEM Finite Slement Method; gce also BLD, BWD, COM, DID, PDE, SOR, SYP;
rT[33-35, 84, 112 (SMY-lI)]; p. 7.5.

FIN Form of the Inverse; see also BGR, BI7, EFI, 10DI, PFI, RGE, SUB, TRF;
see particular type of FIN fur refereu..ns; pp. 3.1-3.3, 4.1-4.7, 5.1-5.6,
6.1-6.3, 9.3, 10.15, 12.2-12A4.

I/O Input and Output; see part F of references; pp. 12.1, 13.2.

-NI INverse Iteration; see also EVV, PFS, SYI; [E-Rl,-R2,-18]; pp. 4.2, 10.4.

IPP Improperly Posed Problem; see also EAN; [e.g., 55]; p. 10.3.

ITR ITerative Refinement; see also EAN, FIN, SUB; [e.t., 64,66]; pp. 2.2,
4.1, 4.4, 9.4, 10.4.

LP Linear Programiniig; see also CAP, ECIA, EFI, MMM, PFI, THP; [4, 32, 62, 73,
75, 78 (SMO-1,-14,-17),96, 112 (SMY-i,-3,-6,-7,-10,-12,-15), 121, 127;
G-31,-43]; pp. 1.2, 3.1-3.3, 4.5, 5.3-5.6. 10.14-10.15.

M-MAT M-MATrix; see also CAP, CMM, DID, NAM, PDE, SYP; [e.g., 101, p. 85; 113'"
pp. 10.5-10.8.

HER MEmory Hierarchy; see also CAR, MOP, TAS; [e.g., 122; F-44,-45]; pp. 4.2-4,4,
8.3-8.4, 9.1, 11.1-11.3, 12.1-12.4, 13.1-13.3.

%M,!M Method of Modified Matricee; see also EC0, EFI, ERM, FIN, PFI; [4, 8, 45
(pp. 79, 84) 52, 78 (SMO-12), 96, 112 (SNY-8), 116-119, 121; G-1
through -5, -19, -20, -31]; pp. 4.4-4.7.

R eproduced from
be.st svaltab~les copy.
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MOP Macro-OPeration; see also FIN, SMA, SUB; pp. 4.3, 4.6, 5.2, 6.4.

!NRA Matrix Reducibility Algorithm; see also BLT; [25, 113; G-6,-10,-11,-20,
-29]; pp. 1.3, 8.5, 10.7-10.12.

NAM Nodal Admittance Matrix; see also CAP, CCD, CMM, DID, M-MAT, 10MM, SYP;
(e.g., 9, 11, 16, 17]; pp. 10.5-10.8.

NLI: NonLinear Equation; see also CAP, PDE, SDE; [19, 74, 120; E-R3];
pp. 2.1-2.4, 10.1.

PDA Pivoting on the liagonal in Arbitrary order; see also DID, SYP; [e.g., 71,
79, 80, 96; part G]; pp. 4.2, 6.1-6.4, 8.1-8.5, 9.1.

PDE Partial Differential Equation; see also BLD, BIM, BK4, CAP, CGM, DID,
FEM, SOR, SYP, TDI,; [1, 10, 18, 21-24, 26, 28, 39, 61, 74, 79, 80, 82,
93, 101, 102, 104, 106, 112 (SMY-16); G-21]; pp. 3.1, 3.3, 7.4-7.5, 12.1.

PDN Pivoting down the Diagonal in Natural order; see also DID, FIN, FDA, PFS,

SFP, SYP, THP, TRV; pp. 2.3-2.4, 4.2, 5.1-5.4, 6.1-6.3, 7.1-7.5, 12.2-12.4.

PF1 Pioduct Form of the Inveise; see also BIF, ECM, EFI, FIN, MMM, SMA;
[e.g., 73, 121; G-31,-431; pp. 3.2, 3.3, 4.5-4.7, 5.3-5.6.

PFS Pivoting For Size; see r',so INI, ITR, SYI, THP; [e.g., E-RI, -R2];
pp. 1.3, 4.2, 5.1, 5.4-5.6, 6.4-6.5, 7.1, 9.3, 10.4-10.5, 12.3-12.4.

PRO PROgra.mning; see also CAP, CAR, MER, SFP, SMA, SPP; (e.g., 40, 78, 112;
F-28,-401; pp. i.1, 2.3-2.4, 3.1-3.3, 6.2, 9.4, 10.12, 13.2-13.3.

PSA Power System Analysis; see also CAP, CCD, DID; [54, 71, 72, 78(SMO-6,
-8,-9,-15), 79, &0, 83, 91, 98, 112 (SMY-4, -13); G-13,-17,-22,-36];
pp. 1.2, 3.1-3.3, 6.1.

RGE Row Gaussian Eilmination; see also EFI, FIN, SMA, TRF; [e.g., 51, 83,
96, 98]; pp. 2.4, 4.1, 4.3, 5.2, 5.4-5.5, 12.3-12.4.

SCA SCAling; see e1so EAN, SUR; [e.g., 5, 6, 15, 33, 88-90, 112(SWY-19);
113]; pp. 4.2, 6.4, 10.1-10.2, 10.4, 10.13-10.15.

SDE Stiff Differential Equations; see also CCD, NLE, PDE; [40, 41, 56, 78
(SMO-17), 112 (S5Y-1,-2,-14), 128, 129; G-46]; pp. 2.1-2.4.

SFG Signal Flow Graph; see also SPP; [124-126]; p. 8.4.

SFP Symbolic Factorization Program; see also BSM, SFG, SPP, SSI, TLP;
[40, 78 (SMO-17), 112 (SMY-2,-9,-13)]; pp. 2.4, 4.2, 10.7-10.12.

L SIAM Society for Industrial and Applied Mathematics; pp. 10.2-10.3.

SIG:LIN Special Itterest Group in NUmerical Mathematics; see also ACM; [67];
p. 10.1.
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SA Sparse Matrix Algorithrm; see also :'jI, DIM, 1211, BGR, CGM, EFI, INI,
I'IR, .•N%1, P'F1, P'S, RHE, S11P, SUP., TDL, THIP, TRF; [e.g., 78, 112);

pp. 2.4, J.1-3.3, 4.1-4.7, 3.1-5.6, 6.2-6.5, 7.1-7.5, 10.5-10.12.

SMO Sparse Matrix Oxford conference; [78]; pp. 1.2, 2.3, 3.1-3.2, 4.4, 6.1,
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QUESTIONS AND COMMENTS FOLLOWING WILLOU'GHBY'S PAPER

QUESTION: How big a problem can GMSO handle?

WILLOUGHBY: The biggest problem we've handled so far was

1, 024 by 1, 024. After chlver generation, not of the long code but of the

sparseness structure for the triangular factors (re: Albert Chang), the

solution for the 1, 024 by 1, 0Z4 for the factorizatlon and back substitutions

on the IBM model 9J required . 75 seconds. However, it took four minutes

to get the program to do it in . 75 second, so if you're only going to do it

once you have to say four plus minutes. That time can be greatly reduced

by clever ordering. Typically we're used to working with several hundred

very sophisticated equations and not masses of very simple equations.

You could go up to about 1000 or beyond if you used Chang's approach

because then all you do is generate the code as you go.

QUESTION: With regard to the future of hardware in handl-ng

structural problems, I notice that you did not mention any of the possibili-

ties of micro-programming where the programmer might be able to con-

struct a computer image to handle his kind of problem. Arc you envision-

ing anything like this?

WILLOUGHBY: It is certainly feasible to do that but whether or not

it is accepted to do that is something I cannot comment on. It's cer "inly

feasible--technologically. Economically and legally I don't know the

answer to that and I cannot comment further,

QUESTION: Is IBM interested in going to parallelism in arith-

metic units such as Iliac has or is that a question I shouldn't ask?
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WILLOUGHBY: Parallelism is a poor word to use; I prefer to use

multi-processing. The word parallelism, unfortunately, means une thing

being split up into many things; but it should also include many things being

split up into many things as, for exanple, when you are solving a great

big problem, a little dinky prublem, and everything else in between. The

word parallelism is a very dangerous word. We want to understand, in

structural engineering, for example, what are the avoidable bottlenecks

in present speed of computation, i. c. , getting things in and ,out. The trouble

with parallelism is that you've got a thousand adders all working but where

arc you going to get all the stuff to keep all those adders busy all the time.

QUESTION: Have you dealt with the problems of band reduction

or packing of data and unpacking of data, eliminate zeroes and so forth?

WILLOUGHBY: No, but I bclicve that McCormack is going to comment

on that when he gives his paper later this week.

QUESTION: You mentioned the work of Kron, I wanted to ask

your opinion on his work and do yo!. think it's worth further pursuit?

WILLOUGHBY: This (the use of electrical engineering techniques for

structural problems) is something which has been thoroughiy explored (by

G. Kron and later by Fcnvcs and F. Banin).

QUESTION: Through representation of matrices in the sparsely

populated form, there arc two main advantages to be gained. Number one

is the storage. You can compress very large sparse matrices in to little

space. The other advantage is the speed. Since you are eliminating all the

zeroes from the computation, your iteration time or cycle time decreases con-
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siderably. Could you give us a comment on the relative importance of the

two factors. If you are using, for example, a purely iterative schenme

like Gauss-Siedel, maybe it takes longer, but then you never fill up your

matrix. Whereas if you are using any of the techniques you mentioned,

you start filling it up and you never know really how much it is going to

fill until it's too late.

WILLOUGHBY: You made a very good comment and I'll try to answc-r

the statement about the tradeoff. You know with certainty how much work

you have to do per iteration step. In Gauss-Siedel, for example, you don't

fill anything in. There is a whole spectrum of iterative methods. First,

w• have what is called the point relaxation where you just solve each

individual equation for the diagonal e.emcnt and then update the solution

either as you go along or all at the end. This approach has been then

elevated to methods called alternating direction in which each basic step

is something that looks like a triadiagonal matrix which you can solve

very fast. This is a little closer to solving the equation, but again you

know exactly how much work is involved. There is also work from partial

differential equations which is called multi-line iteration where you simul-

taneously solve information on several lines which again is closer to direct

methods. So, there is a whole transition here and the tradeoff is very

simple. As you get closer to direct methods, the number of iterations

that you have to make through the process to get the answer decreases,

but you got uncertainty as to how much storage is required and how many

operations per iteration you'd have to do. At the other end of the spectrum

is simple relaxation eor which the number of times you have to iterate kills

you. To estimate how many iterations are required, you have to have ways
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of analytically estimating the rate at which the error vector is decreased.

This is called the eigenvalue estimation problem. In a recent work by

Stone, the author goes kind of whole hog on a new approach which hels

used in petroleum problems including coupled nonlinear systems. It works

but the eigenvalue analysis is very difficult. The results of studies on

model problems were that it was competitive with the very best routines.

It didn•t degrade with nonuniformity, irregular boundaries and all the

things that practical problems are prone to. The iterative approach is

definitely a possibility and if you could guarantee that the rate of iteration is

good enough, then I'll take it every time; but you'd have to guarantee it to Inc.

QUESTION: I'd like to make just a brief comment on the business

of looking at these problem solutions and their economic effects. We find

in engineering application, especially in !arge scale problems, that the

time required to generate the inputs, the time required to form the

equations, to form the matrix, has now become a very considerable part

of both the engineering man labor and the machine time in setting up equa-

tions to be solved. Have there been studies in the combination of prepro-

cessor and simultaneous solution during the process?

WILLOUGHBY: Yes, that has been studied and is being studied very

heavily at the prese... time.

QUESTION: Id like to understand how you make decisions in the

way of setting this (GNSO) up as to which elements are zero and which are

not. I found, for cxample, that if I have to make that decision I might as

well rnulip.y. Ct takes about the same time.



WILLOUGHBY: Where the zeros and nonzeros occur doesn't depend

on what the numerical values are for the nonzeros. The SOLVE code is

generated by GNSO for a whole class of matrices with the same sparseness

structure and can be used repeatedly.

COMMENT: The reason I am asking this question is because I

have in mind a dynamics problem in structural analysis. Now if this

procedure of eliminating multiplication by zero is a general one which

could be applied to such things, we could realize big savings. It would

probably require a very significant effort, however, to generate something

like that for a general structural problem.

WILLOUGHBY: I knowv what you're saying, but I don't know the answer

since I do not know in detail what computations are involved in structural

analysis. You have many degrees of freedom at each node and in each

branch and the mechanization of all that in this context is not obvious. I

think there will be a lot of work involved. If someone was will'ng to do it

and did have this context of solving the same problem repeatedI] with the

same structure, there may be a very nice payoff. This is especially true

if J, the Jacobian, is known to have this positive definiteness, diagonal

dominance or something where you know ahead of time that you don't have

to pivot for size. I don't know that you're going to realize much saving

because some of your structural engineering problems are two and three

dimensional and no matter how clever you order things, the matrices do fill

in. Extensions of band matrix techniques by Bamford, Jennings, McCormick

and others are probably more suitable than the GNSO approach for many

multi-dimensional structural problems.
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All too often computer codes, particularly in the finite element domain,are constructed by the researcher and professional programmer without sufficientcognizance being taken of the requirements of those individuals who would usethe code as a production analysis tool. In addition to the fundamental require-ment of accuracy of results, there are certain features that must be embodiedin every computer code that is to be effectively and efficiently used for dailyanalysis problems.

This paper discusses input, output, and engineering details that should beincorporated into each code as it is written and the work performed within theMissile Systems Division of Lockheed to develop such capabilities. A range ofdata input techniques, including automatic mesh generation, data card, andFORTRAN statement should be provided as standard features; while a variety ofoutput features such as pictorial qnd graphical playback of the model, deflectedshapes, and stresses, along with a number of output formats are consideredmandatory in order that a given program's potential be fully exploited andengineering errors minimized. The program should be constructed in a modularfashion to enable the user to quickly adjust and update the program functionsand capabilities to suit the needs of particular analysis problems. Engineer-ing realities such as large displacement and elastic-plastic options should beincorporated wherever possible to extend the problem solving range of a given
code.

Finally, the development of a number of highly automated programs demon-strating the above features is presented, and research being currently pursued
summarized.
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SECTION I
INTRODUCTION

The interest of the writers in the development of large scale advanced
digital computer codes stems from the nature of' our duties at Lockheed. Our
department is responsible for the structural integrity of all prodticts of the
Missile Systems Division of' the company; a range of' products that encompasses
the Polaris and Poseidon FBM systems in addition to advanced coti:er÷ such as
ULMS, SCAD, and various other classified programs. Our interests include:
ballistic missile structures, reentry systems, motors, ground suppcrt equipment,
and flight control systems. As an adjunct to such activities, we are also called
upon to perform special studies for other Lockheed companies and to analyze
various other components of weapons systums such as launcher concepts, submarine
structures, and propulsion systems. Finally, we have of late found our field
of interest being radicallý widened by the application of our programs to the
analysis of structures outside of Lockheed's traditional aerospace market by

means of technology contracts with other companies.

The nature of our work, together with it.3 demands that we be fully respon-

sive in terms of rapid results to complex problems, led us, in 1965, to start

development of a series of highly user-oriented computer codes with primary

emphasis being placed on accuracy of' results, speed of input/output, program

flexibility and modularity, ease of program extension and update, and adequate

program size to cope with all potential problem demands. This commitment to

aavanced techniques - a commitment which is being continually expanded and

accelerated - initially led to an investigation of available programs and their

applicability to our problems. We were fortunate in that Lockheed's Solid

Mecitanics Laboratory at Palo Alto had developed a strong capability in the area
of finite difference techniques for shell strictures and this led to our obtain-
ing codes such as BOSOR 1 developed by Bushnell(1). Subsequent cooperation
with the Solid Mechanics group IeV to thq levelopment and acquisition of more

advanced codes such as BOSOR 2- 2 ) and 3( 3) generated by Bushnell for shells of

revolution, STAGS developed by Almroth and Brogank4 ) for collapse analysis of
shell structures subjected to generalized loadings, and the STAR code developed
by Sobel, Silsby and Wrenn(5) for transient response analysis of shells of
revolution. This range of programs has given us excellent capability in the
area of finite difference analyses of shell structures, and these programs
have proven their worth during the course of the past six years when applied
t ,.• - 1. .A, engineering problems.

In the domain of finite element analysis - an area where our interest is
very high - we gained our initial capability, as have so many people in the
aerospace industry, by obtaining the program written by Wilson 6) for the
analysis of axisymmetric solids. We were fortunate in having Prof. Wilson
located close by at Berkeley and in developing an active association with him
which still continues. Other programs initially obtained included the SABOR

shell series deyeloped at M.I.T.(7,3), the Rohm and Haas axisymmetric code( 9 ),

the FRAN(10) and STRESS(ll') frane codes, and a frame program, written by
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Whetstone(12). Our requirements Li the area of mixed structures, by which
nomenclature we define an assemblage of links, beams, membranes, plates, and
solids, next demanded that we obtain and develop a range of programs designied
for this class of problems. This need led, in 1966, to a nract with Prof. Kamel
of the University of Arizona to develop the MINI-ASKA codeJ 3 *. This association
has proved of great value and is, happily, still active today. Other advanced
mixed structures codes subsequently obtained were the_)EXBAT series developed by
Loden(lh)and the SNAP series developed by Whetstone 15*. These codes have also
been successfully used in the course of our projects. Finally. a series of codes
were developed or obtained to perform the analysis of such specialized problems
as creep buckling, nose tip anJlyses, and orthotropic properties determination.

In essence, therefore, we have found it most advantageous to mainly obtain
our basic codes from university and research souzrces based on active association
and cooperation with such sources, and direct our own major research and
development activity to the extension of such programs to a highly automated
production status. It is to the discussion of these extensions, and the
techniques employed therein, that this paper primarily addresses itself.

We note that during the course of our research and development we encountered
a large number of programs which were found to possess little utility and potential.
Our reasons for such conclusions are fully discussed later in this paper when we
outline our requ1'ements which any of our codes must fulfill in order to qualify
as a production tool. Assuming that such programs had to be discarded, we concen-
trated our research efforts on the remaining range of basic programs and attempted
to bring these to a highly automated, reliable, and usable form. This particular
area of computerized structural analysis has all too often been neglected, but
it is here that we have found that the large scale program has the greatest benefit
and impact. Our basic equipment to achieve this end has 1Peen three Univac 1108
computers, a range of smaller computers such as the SDS 910, and - as a major
factor - a Stromberg-Carlson 4020 electronic plotter.

With this basic, and expensive, equipment came a set of responsibilities
which our group had to develop in order to efficiently exploit its full potential.
These may be summarized as:

e?

"o A strong background in the theory and application of finite element

and other numerical techniques.

"o Wide experience with a program, its limitations, and its advantages.

"o A high degree of knowledge and skill regarding the computer sy3tem
in use and its limitations.

o An excellent level of programming and modeling ability and experience.

"o An ability to rapidly generate or incorporate new elements, Lechniques,
or program modifications.

"o An expertise in computer graphics and plotter programming techniques.
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o An ability to equate mathematical techniques to engineering realities.

o The capability and duty to always generate hand or approximate
solutions to check complex mathematical models.

Such responsibilities as these are as often neglected by the program useras are the later set of responsibilities cited with respect to the basic program
writer. All too often engineers use an advanced program with no knowledge of
its limitations, accepting its answers on faith rather than fact, and probablyhaving nad it solr,: the wrong problem in the first place. With respect to thisfinal point, we believe that it is imperative that a pictorial playback of thecomputer model input be provided to eliminate such errors and, additionally, thatas much output as possible be provided in a visual format with a minimum of datareduction. Computer run times rapidly fade initc insignificance if three weeks
are required each side of the run for input data preparation and output reductionand assimilation, even making the tenuous assumption that errors can be rapidly
detected and corrected without pictorial displays of the model.

The impact of the highly automated compute, codes on the engineeringorganization and operation of a company are substantial. At Lockheed thetraditional concept of designers and structural analysts as separate entities,each functioning in a narrow field of interest, has largely disappeared. If .hecomputer and its high speed plotter can rapidly and accurately both draw anda.nalyze a structure there is little point to the designer drawing the structureand then transmitting it to the structural engineer for analysis. In this regard,it is noted that the SC4020 plot speed is approximately 0.3 seconds/plot with goodresolution. In similar fashiorý by coupling program. thermo-structural analysescan be performed as a single step rather thcn as individual thermal and structuralanalyses. Similar changes have occurred in the area of coupling dynamic response
and structural analysis.

Finally, a major change has occurred in the manner in which a proposal orpreliminary design is generated and analyzed. Now a wide range of structuralconcepts can be rapidly drawn, analyzel, and documented within the narrow timeconstraints imposed by a customer, ratkher than only analyzing perhaps two, orat best several, design concepts. Witho'It the ability to input and pictoriallyplayback a model in a matter of hours, aialyze that structure within minutes,providing pictorial and graphic-ll output shortly thereafter, anid at the sametime yielding accurate answers, a program cannot claim to be a production tool
for structural engineers. Of course, many structures are far too complex toever achieve this goal but, all too often, programmers or engineers are at faultf:or not striving to attain such a nirvena. Our group at Lockheed has set itself
3uch a goal since 1965 and we will present results to date after first isicussingoverall program requirements as we view them, a short study of analysis costsand output demands, the need for modularity, and our present progrem capabilitieswithin the Missile Systems Division of Lockheed. Pinally, we conclude wi•t asummaxy of our present research in the area of advanced computer programs.
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SECTION II

OVERALL PROGRAM REQUIREMENTS

Aerospace structural analysts places heavy demands on large scale
digital computer programs. We are faced with complicated structures subjected
to unusual and severe environments with the added constraint that weight must
be minimized. To verify the structural integrity of a missile component, and
the degree to which it approaches an optimum, proper account must be taken of
plastic deformation, geometric norninearities, stability, thermal loadings,
fatigue, and quite frequently, rather strange material properties. Historically,
designers do not produce concepts on the basis of our stress analysis capability;
rather, a designer must utilize the most advanced materials and techniques
available to him, consistent with cost and manufacturing constraints. It is

~efore the responsibility of structural engineers to develop analysis tools
of the level of sophistication required to provide adequate support arn guidance
to the design organizations in this operational context.

Our philosophy toward incorporating a new method of analysis _s quite

simple; if it affords an improvement over current methods, we m.ust use it.
However, we cannot always afford to wait for such improvements, but must employ
existing analytical tools. Hence, a bilinear elastic solution is perfectly
anceptable in the absence of a sophi3ticated non-linear Prandtl-Reuss technique.

And we will, in general, prefer a highly reliable approximation to an unstable

"exact" solution. A lack of theoretical nicety cannot cause us to refuse to
undertake an analysis. We rmust find a legitimate approach to a given problem
and employ it, for design schedules cannot wait on long-term research.

Spacecraft and missile structures are often designed on the basis of
ultimate strength, that is; the ability to sustain load past some permanent
deformation criteria to actual failure of part. Since few materials exhibit
linear stress-strain curves to failure, an adequate analysis of a yielding
structure should include some approximation for changing stiffness and load
distribution. Iterative and incremental approaches are used currently in the
Wilson and MINI-ASKA codes: respectively. Incipient or existing yield conditions
are detected according to E.ome criterion, such as Von Mises, Yaximum Shear Stress,
or Maximum Strain, and areas designated as critical cause alteration or reform-
ulation of the stiffness matrix. A recent contract for the analysis of thermal
fatigue led to the development of a step solution accounting for element yielding,
thermal degradation of materir2 propertieq and shifting of the yield surface.
The results GIf this approach have been.'extremely encouraging and the program is
to Le described in detail in a forthcoming paper. This problem, illustrated in
Figure 1 makes obvious the nefessity of graphical output when on., considers that
a complete strain history of every element must be maintained throughout several
thermal loading cycles for each of 1200 elements. We are not aware of the exist-
ence of a working truly nonlinear analysis providing improved accuracy over this
technique without great cost in capacity and reliability.
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An incremental solution is a basic adjunct of any finite element program.
Structures exhibiting geometric, as well as material, nonlinearities are not
uncommon in missile components; for example: glass motors, pressure vessels,
and movable nozzles. A single pass linear solution based on small deflection
theory iz simply unsatisfactory in the analysis of a geodesic or tori-spherical
head, since some deflections actuall-- reverse as the loac increases. The C3
Poseidon motor dome model, for examp. ., yielded a stable solution only when
initial load steps were cut to one-sixteenth of operating pressure. Another
example is threaded or flanged joints in which contact surfaces and bearing
points change during load application. Sophisticated finite difference programs
have come to us for shell-type analysis; but nozzles, bolted joints, threaded
joints, etc., require the geometric generality afforded as yet only by finite
element programs. To meet this requirement we have, therefore, developed a
special one-layer element which is introduced between such flanged joints.
This element is totally incapable of resisting tension or compression until this
strain reaches-l.O, at which point its compressive motion is stopped and flange
faces. now bearing, accept load.

Stability analysis is still very much the province of finite difference
methods, although ,r are currently pushing research in the finite element domain
also. We feel that capability for shell stability vnalysis here at Lockheed is
very high. Extensive use of programs by Bushnell ( ,2,3) and Almroth and Brogan(h)
of the Palo Alto group during the Poseidon program has shown that large-scale
finite difference piograms are now beyond the research tool stage and that they
can be of great benefit in practical production analyses. Examples of results
of such programs compared with actual test results ar, presented in Table 1. The
STAGS program has provided us, for the first time, with a viable method fo'
stability analysis of a geometry reproducing an actual produ'tion item, i.e.,
an assemblage of rings, stiffeners, doors, and cutouts held together by pieces of
tin, whereas in the past, such structures have received the misnomer of 'Shells'
and the misfortune of being analyzed as such. Both BOSOR 3 and STAGS are
relatively new and are now undergoing the only reliable checkout procedure
-- extensive use. It is anticipat'd that these codes will be widely employed,
with associated production-oriented development, during subsequent Lockheed
contracts, although present usage is inestimably aided by close working association
with the authors.

Exotic materia1l abound in aerospace work. Glass-wound motors, carbon fiber
wrapped pressure vessels, plywood nose-fairings, honeycomb support structure,
nearly incompressible propellants, and high anisotropic reentry vehicle nose tips
continually challenge the analyst to provide constitutive relations hIving a
reasonable relationship with reality. Flexibility in this area is extremely
valuable. Shell programs normally contain a set of subroutines for several standard
wall constructions, while our three-dimensional solids programs (13)(16) have
been upgraded since their acquisition to include orthotropic materials for
standard applications such as reentry vehicles and pressure vessel or heat excharger
tubesheets.

Perhaps it woitld seem at this point that we expect eac'h computer program
we receive to be quite broad in scope. Certainly, a tool capable of solving all
our structural problems would be appreciated, but we are not so naive as to
expect a structural researcher to examine all aspects of all possible applicatio?,s
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of his program prior to its release. Still we labor undar the somewhat tenuous
assumption that structural research has structural application as its endo and
this calls for certain concessions on the part of the programmer., usually at
very small cost. A useful production program must be 1Lexible and a requirement
for continual dependence on the author for slight changes ensures that a given
code will rapidly fall into disuse.

The experience of our group has been that many programs have to be discarded
because they have been generated without a sufficient degree of awareness of user
requirements and, in too many cases, possessing so many limitations in terms of
accuracy, usability, and applicability as to render them virtually useless for
a practical range of engineering problems. Examples of such limitations are:

0 Programs which sacrifice usability for speed of solution by, for
example, imposing narrow allowable band widths.
Ue have to solve general structures, not tall slender towers, and
such narrow banding techniques are anachronistic at best and
unacceptable at worst.

0 o Programs with incorrect or outdated elements.
Too often we find that m_,n finite element Malyses are useless
because of this.
Programs wiiich prove impossible to understand, modify, or update.
Such techniques may provide job security in the short terii but

ensure a rapidly obsolete program in the longer term.

0 Programs which do not completely solve the problem.
For a stress analysis program to give forces and moments for 2000
elements rather than stresses is not acceptable.

o Programs with very inefficient storage and assembly and solution
techniques.
Our problems are large and must be solved rapidly and efficiently.

o Programs requiring a large and infl.exible data input scheme.
If structures are mathematically describable then FORTRAN should
be used as input.

o Programs where the user has no warning of any numerical problems

being encountered in solution.
There is no point in inverting an ill-conditioned or singular
stiffness matrix.

o Programs which cannot be highly automated.
We cannot afford the time or errors inherent in hand checking the
large quantities of printed output inherent in most finite element
analysis programs.
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